Product Definition Resource Formats
This note describes the resources contributed to the index by the RELM Product Definition capability through a Tracked Resource Set.
These resources may be read in RDF/XML, Turtle, and JSON formats using the appropriate request headers. This note does not define the semantics of PUT, POST, or DELETE requests; in many cases such requests will fail.
Namespaces
Examples in this document use Turtle, with the following namespaces:
	Prefix
	Namespace URI

	rdf
	http://www.w3.org/1999/02/22-rdf-syntax-ns#

	rdfs
	http://www.w3.org/2000/01/rdf-schema#

	dcterms
	http://purl.org/dc/terms/

	xsd
	http://www.w3.org/2001/XMLSchema#

	vvc
	TBD – Rational’s version, variant and configuration namespace

	pd
	http://jazz.net/ns/pd#


Common Properties
RELM PD resources follow the recommendations in the W3C Linked Data Platform, OSLC Core 2.0, and Rational best practices.
All RELM resources may have the common properties indicated in the table below; the specification of each individual resource type omits these common properties. A resource may have additional properties not described in this note.
The Range column of this and subsequent tables indicate the likely type of the object of a triple. However, in accordance with the general principles of linked data, clients should not assume an object is of that type, but should handle the actual data type.

			Common Properties 

	Prefixed Name
	Occurs
	Value type
	Range
	Description

	rdf:type
	one or many
	Resource
	RDF type URI
	The RDF type of this resource

	dcterms:contributor
	zero or many
	Resource
	foaf:Person
	Owner of, or contributor to, this resource.

	dcterms:creator
	zero or many
	Resource
	foaf:Person
	Creator or creators of resource.

	dcterms:created
	zero or one
	DateTime
	n/a
	Timestamp of resource creation

	dcterms:description
	zero or one
	XMLLiteral
	Rich text in XHTML content valid inside a <div> element
	Descriptive text about this resource.

	dcterms:identifier
	exactly one
	String
	n/a
	A unique identifier for this resource. Not intended for end-user display.

	dcterms:isVersionOf
	exactly one
	Resource
	pd:Item
	For a resource that is a version of some other resource: a reference to the concept resource of which this is a version. The subject of this triple is the version resource, not the concept resource. The subject of almost all other triples is the concept resource, representing the idea that a version resource captures the concept resource at some state.

	dcterms:modified
	zero or one
	DateTime
	n/a
	Timestamp of latest resource modification

	dcterms:title
	zero or one
	XMLLiteral
	Rich text in XHTML content valid inside a <span> element
	Human-readable name or title of the resource.


Products and their parts: Items
The product definition tool allows the user to define products and their parts, providing structures similar to a bill of materials. These structures are directed acyclic graphs (DAGs), though for simplicity they are represented as trees in the user interface.
Each product line, or product, or part thereof is represented by a concept resource with rdf:type = pd:Item, where pd:Item is a subclass of rdfs:Class. The term Item is borrowed from the STEP (ISO 10303) model used in PDM tools.
Since the product definition graphs are always presented in the context of a configuration, each node in these graphs corresponds to a version of one of these Item concept resources. These resources have no pre-defined properties beyond the standard ones described above, but may have arbitrary user-defined properties. These user-defined properties are not used in a strictly correct manner; the properties are not properties of the class, but of all instances of that class (for example, we allow the user to define a wheelSize property on the wheel class, where that property applies to all instances of the class). Although incorrect, it is felt this will not cause confusion, and results in simpler queries.

			Properties of Item resources

	Prefixed Name
	Occurs
	Value type
	Range
	Description

	any
	zero or more
	any
	any
	Custom properties other than links allow user-selectable URIs for the predicates. In RELM 1.0, link properties are not user-definable but use the fixed predicate dcterms:references.
Custom link properties to other resources (typically but not necessarily those found in the index) may be used to relate this Item to its associated requirements, designs, etc.


Configurations
The RELM product definition application uses the Versions, Variants, and Configuration Management Service (VVC) to manage configurations, and determine the versions of each concept resource used in those configurations. RELM posts dimension point mappings to VVC, and can retrieve version information and mappings from VVC.
Since RELM creates variants of product definition resources, and allows fine-grained reuse of the variants, VVC resources and predicates must be read in conjunction with RELM resources to understand the nature of the resulting structures. For this reason, some of the examples at the end of this note include some possible VVC resources. However, the VVC data is not part of the RELM product definition resources, so is not defined here, and may vary from the examples shown here.
Views
In Product Data Management (PDM) or Product Line Engineering (PLE), it is common to define hierarchies of products and their constituent parts – like a Bill of Materials. A single product or constituent part may have more than one view, where each view is a different hierarchy or filtered view of a single combined hierarchy. For example, a car might have a mechanical view and an electrical view: the mechanical parts and their structures are not the same as the electrical parts and structures.
A View is a concept resource with rdf:type=pd:View that defines the parts or members of a particular view of some version of a parent Item. In RELM 1.0, there is likely to be only one view per Item version.
View resources are versioned; different versions of a view may be used in different VVC configurations, allowing controlled reuse of views, and allowing different versions and variants of the view in those configurations.
A View is also a Linked Data Platform Container, specifying the membership and ordering predicates used for the members of this view.

			Properties of a View

	Prefixed Name
	Occurs
	Value type
	Range
	Description

	pd:isViewOf
	exactly one
	Resource
	any
	A reference to the parent resource of which this is a view. 

	bp:membershipPredicate
	zero or one
	URI
	Predicate
	The predicate used to define membership in this view.

	bp:containerSortPredicates
	zero or one
	Resource
	rdf:List
	A list of predicates that a client can use for sorting the members of this view

	rdfs:member,
dcterms:hasPart, or
as defined by bp:membershipPredicate
	zero or more
	Resource
	pd:Part
	A reference to a member of the view (a constituent part). The recommended predicate for RELM views is dcterms:hasPart.



Parts
Each member of a view is represented as a non-versioned resource with rdf:type=pd:Part (in addition to the rdf:type predicate used to reference the concept resource for this part. Note that each resource of this type is specific to some context, and is not shared between multiple contexts; it therefore represents a part in context, where a context might be a View, or some other structure such as a requirements collection. Part resources may have additional properties used for ordering the members of the View containers.
			Properties of a Part

	Prefixed Name
	Occurs
	Value type
	Range
	Description

	dcterms:title
	zero or one
	XMLLiteral
	Rich text in XHTML content valid inside a <span> element
	Optional human-readable label showing the usage of this part.

	rdf:type 
	typically two
	Resource
	any
	One type is pd:Part.; the other type is the concept resource reference for the part. This could be a pd:Item, but could be of any type; clients and applications must delegate handling of the relevant resources to the appropriate application or capability.

	vvc:foreignConfiguration
	zero or one
	Resource
	vvc:Configuration
	The VVC configuration to be used for the member resource; if not specified, the child inherits the same configuration as the parent or current context.

	any
	zero or more
	any
	any
	Instantiation and ordering properties may be present – that is, properties that apply to this specific usage of the constituent part, such as the inflation pressure for this usage of a tire, or properties that are used for ordering of view members.


RDF Vocabulary
Each type and predicate defined in this document with the pd namespace prefix shall be a readable URI.  A GET on such a URI shall respond with an RDF vocabulary document; both HTML and RDF formats shall be supported.

Examples

@prefix dcterms: <http://purl.org/dc/terms/>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix bp: <http://open-services.net/ns/basicProfile#>.
@prefix pd: <http://jazz.net/ns/pd#>.
@prefix : <http://example.org/toybike/>.

pd:Item rdfs:subClassOf rdfs:Class.
pd:View rdfs:subClassOf bp:Container.

# We start with a version-unaware look at a bike and its parts

# First, we define a bike item.
:bike
   a pd:Item.

# Now, we define a compositional view of that bike;
# in this compositional view, the bike has two wheels,
# with no distinction between front and back wheels.
:viewOfBike
   a pd:View;
   pd:isViewOf :bike;
   bp:membershipPredicate dcterms:hasPart;
   dcterms:hasPart :frontWheel, :backWheel .
:frontWheel
   a pd:Part, :wheel.
:backWheel
   a pd:Part, :wheel.

# Define the wheel item, with a user-defined wheel size property.
:wheel
   a pd:Item;
   :wheelSize 15 .

# And a compositional view of the wheel, with tire and hubcap.
:viewOfWheel
   a pd:View;
   pd:isViewOf :wheel;
   bp:membershipPredicate dcterms:hasPart;
   dcterms:hasPart :tirePart, :hubcapPart.
:tirePart
   a pd:Part, :tire.
:hubcapPart
   a pd:Part, :hubcap.

# The tire and hubcaps are leaf nodes in this example,
# so they have no views, just items.  The hubcap is colored silver.
:tire a pd:Item.
:hubcap a pd:Item; :color :silver.

# We associate the bike with a requirements module in DOORS,
# a design in Rhapsody DM, and to a relevant wikipedia article.
:bike
   dcterms:references <http://doors.example.com/bikeModule/bikeRequirements>,
      <http://dm.example.com/dm/bikeDesign>,
      <http://en.wikipedia.org/wiki/Bicycle>.

# In this example, we introduce different versions of the bike parts.
# We use TriG rather than Turtle, with a separate graph for each resource
# in the TRS/index.
# For simplicity of exposition, the following example elides the View,
# and pretends that an Item owns its constituent parts directly.
# Note that all the resources and triples in these examples are created
# and updated by RELM, except for the triples in blue italic which may be
# contributed by VVC, given suitable version-to-point mappings.

@prefix vvc: <http://jazz.net/ns/vvc#>.

# Define the initial concept resources: bike, wheel, tire, hubcap
# by defining a first version of each.

:bike-1 = {
   :bike-1
      dcterms:isVersionOf :bike.
   :bike
      a pd:Item;
      dcterms:hasPart [a :wheel], [a :wheel].
}

:wheel-15inch = {
   :wheel-15inch
      dcterms:isVersionOf :wheel.
   :wheel 
      a pd:Item;
      :wheelSize 15;
      dcterms:hasPart [a :tire], [a :hubcap].
}

:tire-15inch = {
   :tire-15inch
      dcterms:isVersionOf :tire.
   :tire
      a pd:Item;
      :wheelSize 15 .
}

:hubcap-silver = {
   :hubcap-silver
      dcterms:isVersionOf :hubcap.
   :hubcap 
      a pd:Item;
      :color :silver.
}

# Construct the first bicycle configuration that selects
# these initial versions. Note that RELM may create the configuration,
# but VVC decides the vvc:selects triples using the configuration function.

# In bike configuration 5_15_silver:
# the timeOrder is 5, the wheels are 15" and the hubcap is silver.
:bikeConfig_5_15_silver = {
   :bikeConfig_5_15_silver 
      a vvc:Configuration;
      vvc:point [vvc:timeOrder 5; :wheelSize 15; :color :silver];
      vvc:selects
         vvc:mapping1,
         vvc:mapping2,
         vvc:mapping3,
         vvc:mapping4.
}
# Still continuing with the same example,
# we introduce a 17" wheel and tire, and a red hubcap.

:wheel-17inch = {
   :wheel-17inch
      dcterms:isVersionOf :wheel.
   :wheel
      a pd:Item;
      :wheelSize 17;
      dcterms:hasPart [a :tire];
      dcterms:hasPart [a :hubcap].
}

:tire-17inch = {
   :tire-17inch
      dcterms:isVersionOf :tire.
   :tire
      a pd:Item;
      :wheelSize 17 .
}

:hubcap-red = {
   :hubcap-red
      dcterms:isVersionOf :hubcap.
   :hubcap
      a pd:Item;
      :color :red.
}


# In bike configuration 9_17_red:
# the wheels are 17", the hubcap is red.
# Note that the bike itself did not need to change.

:bikeConfig_9_17_red = {
   :bikeConfig_9_17_red
      a vvc:Configuration;
      vvc:point [vvc:timeOrder 9; :wheelSize 17; :color :red];
      vvc:selects
         vvc:mapping1,
         vvc:mapping6,
         vvc:mapping7,
         vvc:mapping8.
}
# In the following example, we build a penny-farthing, which is
# a bike with a large front wheel and a small back wheel.
# For completeness, we redefine everything from scratch, and include the views.

@prefix dcterms: <http://purl.org/dc/terms/>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix bp: <http://open-services.net/ns/basicProfile#>.
@prefix vvc: <http://jazz.net/ns/vvc#>.
@prefix pd: <http://jazz.net/ns/pd#>.
@prefix : <http://example.org/toybike/>.

pd:Item rdfs:subClassOf rdfs:Class.
pd:View rdfs:subClassOf bp:Container.

:wheel-15inch = {
   :wheel-15inch dcterms:isVersionOf :wheel.
   :wheel 
      a pd:Item;
      :wheelSize 15 .
}
:viewOfWheel-15inch-v1 = {
   :viewOfWheel-15inch-v1 dcterms:isVersionOf :viewOfWheel-15inch.
   :viewOfWheel-15inch
      a pd:View;
      bp:membershipPredicate dcterms:hasPart;
      pd:isViewOf :wheel-15inch;
      dcterms:hasPart [a :tire], [a :hubcap].
}
:tire-15inch= {
   :tire-15inch dcterms:isVersionOf :tire.
   :tire
      a pd:Item;
      :wheelSize 15 .
}
:wheel-50inch = {
   :wheel-50inch :isVersionOf :wheel.
   :wheel
      a pd:Item;
      :wheelSize 50 .
}
:viewOfWheel-50inch-v1 = {
   :viewOfWheel-50inch-v1 dcterms:isVersionOf :viewOfWheel-50inch.
   :viewOfWheel-50inch
      a pd:View;
      bp:membershipPredicate dcterms:hasPart;
      pd:isViewOf :wheel-50inch;
      dcterms:hasPart [a :tire], [a :hubcap].
}

:tire-50inch = {
   :tire-50inch dcterms:isVersionOf :tire.
   :tire
      a pd:Item;
      :wheelSize 50 .
}
:hubcap-silver = {
   :hubcap-silver dcterms:isVersionOf :hubcap.
   :hubcap 
      a pd:Item;
      :color :silver.
}


# And build the penny-farthing.  This time, since the wheels are different,
# we drop the use of pd:occurrences and use two different sub-configurations.
:bike-pF = {
   :bike-pF dcterms:isVersionOf :bike.
   :bike a pd:Item.
}

:viewOfBike-pF-v1 = {
   :viewOfBike-pF-v1 dcterms:isVersionOf :viewOfBike.
   :viewOfBike-pF
      a pd:View;
      bp:membershipPredicate dcterms:hasPart;
      pd:isViewOf :bike;
      dcterms:hasPart [
         a :wheel; vvc:foreignConfiguration vvc:largeWheelConfig];
      dcterms:hasPart [
         a :wheel; vvc:foreignConfiguration vvc:smallWheelConfig].
}

[bookmark: _GoBack]
# Finally, show the penny-farthing configuration
# and its two different sub-configurations

:bikeConfigPF = {
   :bikeConfigPF
      a vvc:Configuration;
      vvc:point [vvc:timeOrder :now; :color :silver];
      vvc:selects
         vvc:mapping110,
         vvc:mapping111.
}

vvc:largeWheelConfig = {
   vvc:largeWheelConfig
      a vvc:Configuration;
      vvc:point [vvc:timeOrder :now; :wheelSize 50; :color :silver];
      vvc:selects
         vvc:mapping102,
         vvc:mapping103,
         vvc:mapping104,
         vvc:mapping106.
}

vvc:smallWheelConfig = {
   vvc:smallWheelConfig
      a vvc:Configuration;
      vvc:point [vvc:timeOrder :now; :wheelSize 15; :color :silver];
      vvc:selects
         vvc:mapping100,
         vvc:mapping101,
         vvc:mapping104,
         vvc:mapping105.
}

