OSLC ALM-PLM Interoperability Proof of Concept

Mike Loeffler Systems Engineering IT Specialist General Motors Company <u>michael.loeffler@gm.com</u>

Disclaimers and Fine Print

- No information contained herein represents implied or expressed product direction of any of the below mentioned third parties
- Trademarks used herein are property of their respective owners:
 - Teamcenter and TcUA are trademarks property of Siemens PLM
 - Rational Team Concert is trademark property of IBM
 - Java is trademark property of Oracle
 - OSLC is trademark property of Open Services for Lifecycle Collaboration standards group
 - Eclipse is trademark property of Eclipse Foundation
 - SysML is trademark property of the Object Management Group
 - Other names and trademarks may be claimed by others
- Example data mentioned herein is modeled after the "HSUV Example" from OMG SysML Specification Version 1.2, Appendix B, at: <u>http://www.omg.org/spec/SysML/1.2/PDF/</u>

What is ALM?

- Application Lifecycle Management
- PLM for Software Products (Applications)
- Domains Include
 - Requirements
 - Change and Configuration Management
 - Architecture Resources (Models)
 - Source Code
 - "Assets" (Binary Objects)
 - Quality Management (Testing)
 - Automation of Software Build Processes
- New and Evolving Concept

What Is OSLC?

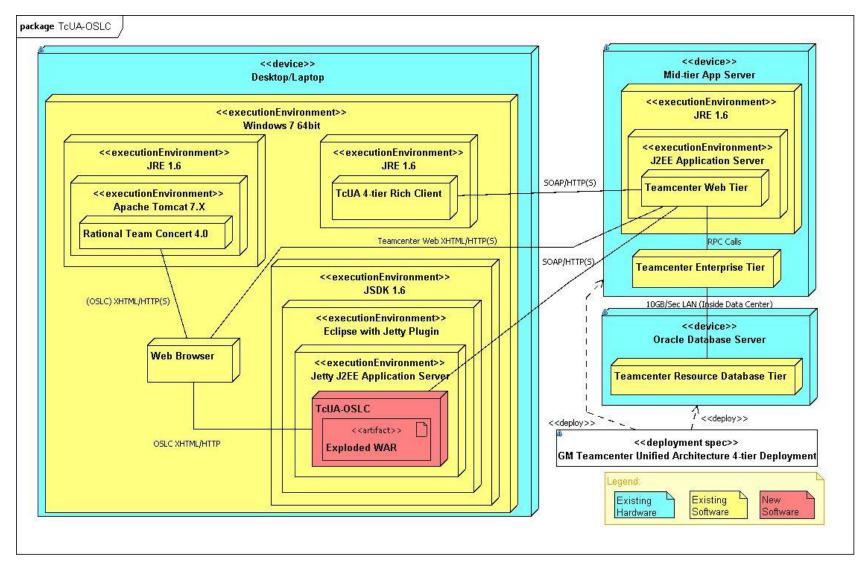
- Open Services for Lifecycle Collaboration
- Emerging Standard for Tool Integrations in ALM Domains
- Loosely Coupled
- Semantic Web Linked Data
- Based on Web Architecture RDF, HTTP
- RESTful Services
- Details at <u>http://www.open-services.net</u>

Why ALM-PLM?

- GM Products Require Increasing Amounts of Embedded Software (Mechatronics)
- Development Requires a Systems Engineering Approach to Assure Best Customer Value
- Systems Engineering of These Products Forces Collaboration Around Cross-Cutting Concerns
 - Requirements (Traceability)
 - Behavioral Definition and Models
 - Physical Implementation Allocation Decisions (Hardware vs. Firmware vs. Software)

OSLC PLM Work Group

- Chartered in 2010
- Identifying OSLC Core Spec Extensions and/or Specific PLM Domain Specification
- Details at <u>http://open-</u> <u>services.net/bin/view/Main/PlmHome</u>
- Initial Scenario: "A Systems Engineer responds to a change in requirements for an existing product release"


ALM-PLM Scenario

- High Level Steps
 - Identify the change and assign it to be worked
 - Find impacted objects (requirements, designs, etc.)
 - Satisfy change with reused, modified or new versions of objects
 - Approve revised design and close the change request
- System being changed is composed of hardware, firmware and software elements
- Changes required to all aspects of the system
- Details at <u>http://open-</u> <u>services.net/bin/view/Main/PlmSystemsEngineeringScenarioS</u> <u>ystemsEngineerReactstoChangedRequirements</u>

POC Approach

- Goals of the POC
 - Prove that certain Objects in Teamcenter can be meaningfully "exposed" as OSLC Resources
 - Identify holes in current OSLC standards and propose solutions
 - Guidance for implementation
- Not Intended to Represent Any Production Implementation Approach

POC Architecture

Based on RIO Project

- "Reference Implementation of OSLC"
- Open source project originally hosted at: <u>http://sourceforge.net/projects/oslc-tools/</u>
- Simple Standalone OSLC Web Services with RDF Store
- Provided Patterns and Code Base for POC
- Project Has Morphed into Eclipse Lyo at: <u>http://www.eclipse.org/projects/project.php?id=tec</u> <u>hnology.lyo</u>

Data Model Mapping

- Used Following Mappings for POC:
 - OSLC Requirement
 - TcUA Requirement, RequirementSpec or Paragraph
 - OSLC ChangeRequest
 - TcUA EngChange
 - OSLC Resource
 - TcUA CORP_Schematic, CORP_Software or CORP_Part
 - OSLC Product (New Proposed OSLC Resource for PLM)
 - TcUA CORP_Product, CORP_Proc_Plan, CORP_Vehicle or CORP_Install
- CORP_* Object Types are GM Overlay Specific, Similar OOTB Types Exist for Most
- Mappings Are Configurable

11

Semantic Assumptions

- OSLC Uses Semantic Web "Open World" Assumption
 - Every Resource has a URI (ideally persistent)
 - Non-existence is not implied by empty query result
 - Client must be tolerant of and responsible to preserve any unknown data elements
 - See: <u>http://www.w3.org/standards/semanticweb/</u>
- TcUA Uses Relational/Object-Oriented "Closed World" Assumption
 - Empty query result implies the queried object does not exist (as far as we are concerned)
 - Client has full data model knowledge and will likely fail if sent unknown data

Semantic Level Mismatch

- RIO-Lyo Design Assumed RDF Triple Store Backend
 - Triple store similar to relational table attribute level (e.g. one triple = <subject> <predicate> <object>)
- TcUA SOA API is at Object Level
 - Higher level concepts (Item/Item Revision/Item View)
 - Many referential constraints built in
- TcUA-OSLC Connector Maps Resources to Objects (approximately)
 - RIO-Lyo code was forked and heavily modified to connect at a higher level than the original RDF triple store
 - Made some simplifying assumptions on referential constraints
- POC Identified and Implemented Proposed OSLC PLM Extensions
 - Versions
 - View Definitions
 - Variants

Interaction Examples Lyo Web UI

- Login
- Interactive Change Request Query
- Interactive Navigation Using Linked Data
- Interactive Trace Link Navigation
- Interactive Trace to External Resource (Web Page)
- Create a Requirement
- Update a Requirement
- Add a Trace Link

Teamcenter Learnings

- Teamcenter SOA API is Very Complicated to Develop With
 - Many overlapping/ambiguous classes and methods, not clear which to use
- SOA Sample Code Very Helpful
 - Should be expanded
 - PLM Users Community Open Source effort???
- SOA Covers The Core Teamcenter Concepts Well
- Policy Tuning is Important

OSLC Learnings

- OSLC Needs PLM Concepts
 - Version/Revision Handling
 - Variants, Options and Effectivity
- OSLC RIO-Lyo Code Very Helpful

 Open Source Eclipse-Lyo starting up
- OSLC Makes Loose Integrations Simple
- OSLC May Simplify Distributed/Federated Repository Implementation

Further Work Planned

- Demonstration of OSLC Configuration Management and PLM Specs
- Porting to New Eclipse Lyo SDK
- Add Lyo UI Support for Link Creation
- Security support for Oauth and Teamcenter Security Service (SSO)
- Study Integration into Teamcenter Web Application Server
- SPARQL Query Support
- Investigate Teamcenter RAC and Web Client Support (Rich Hover, Links)
- Demonstrate Specialized UI's Based on OSLC (RSS Feeds for Change Notification, Mobile Apps, etc.)
- POC SysML Modeling Tool Integration

Call for Participation in OSLC

- ALM-PLM Users Unite!
- Open Call for Vendors to Support OSLC
 - Requirements Management
 - Change Management
 - Source Code Management
 - Architecture Management
 - Quality Management
 - Product Management

34

Credits

Special thanks to the following for their participation, help and encouragement in this POC:

- The OSLC Connectors POC Team
 - Mohamed Egal
 - Raheel Syed
 - James Rozum (advisor)
 - Thomas Tecco (advisor)
- Members of the OSLC ALM-PLM Workgroup
 - Rainer Ersch
 - Gray Bachelor
- Members of other various OSLC Workgroups and the RIO-Lyo Implementers
 - Jim Conallen
 - Steve Speicher
 - Mike Fiedler
 - Hiroaki Nakamura
 - Arvind Rengarajan

35