
Business value of open collaboration
December 2009

The business value of open
collaboration

Carl Zetie
Strategist, IBM Rational

Scott Bosworth
Program Manager, IBM Rational

How interoperability is fostering a new ecosystem for
manufacturers and consumers in the software delivery arena

Introduction
Software is everywhere. It runs our business processes, back-office functions,

and customer transactions. It drives our Web presence, online business,

and customer relationships. And increasingly, it’s embedded in the physical

products and the infrastructure of everyday life -- from automobiles, consumer

appliances, phones, and personal devices, to power grids, traffic systems, and

health care. Everything we use is increasingly made smarter by software and

connected through the Internet.

Consequently, the ability to rapidly and reliably enhance enterprise software

systems as well as the ability to deliver smarter products and services have

become a critical differentiator for businesses that face increasing competitive

pressures. To meet these challenges, business leaders need their software

delivery process to work at least as well as their other business processes do.

They need to have predictable delivery cycles; cost-to-value management; and

continuous visibility into work in progress. They need to be able to rely on the

delivery of the software elements of business initiatives and products – but all

too often, despite the best efforts of vendors and users, they can’t.

Even though development and delivery team members are smart, hard-

working, and dedicated to satisfying their stakeholders, somehow problems still

creep in. Requirements get lost in translation from analysis to construction.

Test cases get missed, causing old bugs to reappear. Project progress and status

is hard to decipher. Even in the most successful, well-run organizations, too

much effort is wasted on mundane, administrative tasks such as data transfers

or status updates.

 2	 Introduction

 3	 It takes a village

 5	 The greatest integration on Earth

 6	 OSLC: An open forum for

collaboration

 7	 The business value of open markets

11	 The openness of OSLC

13	 The OSLC community

14	 Conclusion

15	 Appendix A: The technical

architecture of OSLC

17	 Appendix B: Creative Commons

Licenses and Copyrights

Contents

Business value of open collaboration
Page 2

Business value of open collaboration
Page 3

Highlights
Why is it so hard for smart, hard-working, dedicated professionals to

successfully deliver software projects? One major barrier lies in the tools that

software development professionals depend on. More accurately, it lies between

those tools. The software delivery process today is reminiscent of a 1950s office.

The simple act of sending a letter might involve the following steps:

•	 A manager dictates the letter to a secretary, who takes it down in shorthand

•	 The secretary delivers the shorthand to the typing pool

•	 A typist transcribes it, making a carbon copy, then sends it back for review

•	 The manager reads it over and marks any corrections

•	 The secretary takes it back, and the wasted carbon copy is discarded

•	 This cycle repeats until the letter is satisfactory

•	 The manager signs it and the secretary mails it out

•	 Finally, the secretary files the carbon copy in case it is ever referred to again

Just imagine the number of ways that this process can go wrong: the

secretary mishears the dictation; the typist misreads the scribbled

shorthand; or the manager realizes he omitted critical information when he

reads back his own letter, to name just a few. Each handoff introduces the

possibility for errors and omissions, causing costly rework and delays, not

to mention the expense of verification required at every stage to make the

process go right. Unfortunately, this quaint last-century vignette is all too

reminiscent of the process handoffs in modern software development!

In this paper you will learn about the value of “openness” in business

computing, including open standards, open source, and open interfaces.

We will also describe an initiative that breaks down the barriers between

tools so that teams can collaborate seamlessly, communicate effectively, and

provide the visibility that the business needs – without requiring companies

to retool and reskill their development organizations.

It takes a village
Throughout the history of the software development industry, vendors have

created increasingly helpful and sophisticated tools that have dramatically

increased the productivity, accuracy, and effectiveness of every role in the

software development lifecycle. But often the effect has been as if we replaced

those 1950s typewriters with word processors, and left every other element of

The software delivery process today

is reminiscent of a 1950s office,

where the simple act of writing a

letter involves multiple handoffs.

Unfortunately, this quaint last-century

vignette is all too reminiscent of the

process handoffs in modern software

development.

the process in place. Individuals have better tools today than they have ever

had, but the process itself is still flawed. No matter how good the business

analyst’s requirements tool is, effort will be wasted if she has to hand off

those requirements to designers (as if she were an executive dictating to

a shorthand-recording secretary); and it doesn’t matter how good the test

automation software is if the defects get passed back to development unreli-

ably (as with hand-scribbled notes on a first draft of a letter). Development

organizations need a solution to the challenges that face the team across the

lifecycle, rather than merely the challenges facing each individual: in other

words, what they need is collaboration.

In an attempt to meet this need, the industry has seen the rise of successful

vendors offering cross-lifecycle tools, such as those provided under the IBM

Rational brand, that provide the necessary integration and interoperability.

However, it’s rare that a software delivery organization relies solely on a few

tools from a single vendor. More often, teams bring to bear a range of com-

mercial, open source, and in-house developed tools, and often employ com-

peting tools in different parts of their organizations. Realistically then, this

discussion can’t be about a specific tool suite or small number of vendors;

moving beyond the 1950s analogy requires an industry-wide perspective.

The industry has made numerous attempts to solve the burning need for

tools interoperability, but each of them foundered for some combination of

the following reasons:

•	 The scope was too ambitious. Any attempt to define a comprehensive

“integration map” for the whole software lifecycle was doomed to be

obsolete before it could be finished.

•	 It depended on unrealistic levels of vendor cooperation. Each vendor

involved in standardization efforts would fight to entrench its own

proprietary advantages in the standard, and each would just as fiercely

resist attempts by its competitors to do the same.

•	 It required “rip and replace” adoption by user companies. Under some

proposals, customers would have to replace their existing tools with

new ones. At the very least, they would need to migrate data to a single

common repository. That was too high a barrier for potential adopters.

•	 The collaboration was not sufficiently open. Often, the invitation

to participate in a standardization effort was driven by competitive

motivations rather than even-handed inclusiveness, leading to the

omission of key potential contributors.

Business value of open collaboration
Page 4

Highlights

Individuals have better tools today

than they have ever had, but the

process itself is still flawed.

It’s rare that a software delivery

organization relies solely on a few

tools from a single vendor. More often,

teams bring to bear a range of com-

mercial, open source, and in-house

developed tools.

•	 The focus was on what vendors wanted, not on what their customers

needed. As a result, protectionist compromises limited the business

value that user companies could obtain.

Lacking any lifecycle-wide strategy for integration, vendors have resorted to the

next-best alternative: individual bridges between pairs of tools, using vendors’

published proprietary APIs. The disadvantages of this approach are many, and

include:

•	 The number of integrations rises exponentially with the number of tools.

Developing and maintaining the integrations is expensive for vendors, and

operating them is burdensome for customers.

•	 Coverage is limited. Each vendor tends to integrate with the tools of its allies,

and ignore or exclude the tools of its competitors, to the detriment of custom-

ers who would simply like to choose the best tool for each job.

•	 The integrations are brittle. Pairs of tools become tightly dependent on each

other’s internal structures or detailed behaviors, and upgrading one product

can break the integration. And worse, since each of those tools is on its own

release schedule, customers using a variety of tools may struggle to find a mix

of releases of the interdependent products that work together.

The greatest integration on Earth
Faced with this pressing business need and historical difficulty, the IBM

Rational organization took a step back and asked: What kind of integra-

tion approach would it take to make lifecycle collaboration successful? We

decided that the architecture of the solution would have to be:

•	 Incrementally adoptable by user companies. It must not require whole-

sale replacement of existing tools or skills. Instead, it must allow imple-

mentation piece by piece, with each step delivering positive value.

•	 Technically acceptable to vendor companies. It must not mandate a

specific implementation technology or repository, nor require vendors to

make wholesale changes to their existing products or give up proprietary

product differentiators.

•	 Authentically open. Participation would have to be open to any vendor,

open source project, or in-house implementer, regardless of competitive

positions or alliances.

Business value of open collaboration
Page 5

Highlights

Lacking any lifecycle-wide strategy

for integration, vendors have resorted

to the next-best alternative: individual

bridges between pairs of tools, using

vendors' published proprietary APIs.

The disadvantages of this approach

are many.

The IBM Rational organization took

a step back and asked: What kind

of integration approach would it

take to make lifecycle collaboration

successful?

Business value of open collaboration
Page 6

As we looked around for a successful means of integration that fit this

profile, we realized that the best precedent is also the largest example

of “integration” that the world has ever seen: the World Wide Web itself.

By conforming to a modest set of standard interfaces and a common

architectural principle, anybody can participate in the Web by creating a

Web site or publishing a blog; and any browser can consume any of the

billions of pages that make up the Web.1 Many different types of content

coexist, and new types are easily added without disruption. Furthermore, the

simple and flexible architecture of the Web, and in particular its common

integration mechanism of resource links, allows the emergence of new uses

for all that content that did not exist when the Web was first invented, such

as search engines or content aggregation.

On the Web, nobody needs permission to create content, nor to consume

content, nor to link to content.2 The result of this open access is that

Internet participation has grown exponentially, while membership in older-

style online services that restricted content and limited users’ choices has

rapidly declined.

At IBM we realized that the way our industry has approached integration

in the past is like those closed, limited online services; and we asked

ourselves: how could software lifecycle collaboration be more like the

open, unrestricted Web? The answer we propose is agreement on basic

specifications to enable integration. The vehicle to get there: a forum for

cooperation called Open Services for Lifecycle Collaboration (OSLC).

OSLC: An open forum for collaboration
The goal of OSLC is to re-examine how we look at interoperability so that:

•	 Any tool can be integrated on an equal footing simply by sharing

resources and services agreed to in open specifications

•	 Anyone can participate in the specification process on equal terms, not

only vendors but also user companies, industry forums, open source

projects, or motivated individuals

•	 Any organization can freely take advantage of the specifications, whether

they choose to contribute to the effort or not

•	 The mistakes of the past that led to limited coverage and brittle integra-

tions are averted

Highlights

We realized that the best precedent

is also the largest example of

"integration" that the world has ever

seen: the World Wide Web itself.

How could software lifecycle

collaboration be more like the open,

unrestricted Web? The answer we

propose is agreement on basic

specifications to enable integration.

Business value of open collaboration
Page 7

To achieve those ambitions, OSLC embodies three key elements:

•	 A unifying – and universal -- architectural style that leverages the lessons of

the Web.

•	 A set of technical specifications inspired by real world scenarios, openly pub-

lished and freely adoptable.

•	 A transparent and open community process with no unreasonable barriers to

participation.

The OSLC organization today is simply a group of people from across the industry

who share an interest in changing the status quo. They utilize modern on-line

collaboration tools for discussing specific integration challenges and scenarios.

Solutions are proposed, debated and prototyped, and ultimately, candidate specifi-

cations are published. OSLC has no membership fees or applications; no egre-

gious bureaucratic processes; and no “purity tests” for participation. In fact, there

is only one way to influence the work of the OSLC: to participate in it.

As we established OSLC, we knew that it would be critical that the intellectual

property required to implement compliant products be open. However, it turns

out that there is more than one way to be “open,” and in order to choose the right

way, we had to take a step back and review the business goals we were hoping to

achieve.

The business value of open markets
Since the beginning of the industrial age, smart companies have recognized

the value of common specifications. Whether it’s house bricks, screw threads,

car parts, or electronic circuitry, markets work best when suppliers, purchas-

ers, and end users can rely on the interoperability and interchangeability

of parts regardless of source. Shared specifications promote competition,

diversity of offerings, reuse of common components, and also innovation,

because incremental improvements can be built on top of the existing foun-

dations. Everybody is better off as a result: Sellers create more value, buyers

receive more value, and innovators can add more value. The compact disc

(CD) market flourished because Sony and Philips, the vendors who created

the technology, licensed the necessary patents widely, reasoning correctly

that both were better off sharing a huge market than owning a small one. By

contrast, the adoption of both HD-DVD and Blu-Ray Disc, competing formats

to succeed the DVD, was stalled for several years by the inability of either

specification to become universally endorsed.3

Highlights

The OSLC organization today is

simply a group of people from

across the industry who utilize

modern on-line collaboration tools

for discussing specific integration

challenges and scenarios. Solutions

are proposed, debated and

prototyped, and ultimately, candidate

specifications are published.

The compact disc (CD) market

flourished because Sony and

Philips, the vendors who created the

technology, licensed the necessary

patents widely, reasoning correctly

that both were better off sharing a

huge market than owning a small one.

Business value of open collaboration
Page 8

And yet, for much of its early history, the IT industry shunned cooperation,

with vendors preferring to protect proprietary fiefdoms rather than promote

collaboration. For many years, the word “standard” in IT was doublespeak for

“dominant proprietary product.” 4 This practice continued despite the grow-

ing evidence that common specifications were better for everybody. Buyers

benefit because vendors are forced to compete on quality, price, support,

and pace of innovation. Vendors benefit because the market as a whole grows

more rapidly -- so even though they have to compete with each other, the

amount of business value available for them to target more than compensates

for the loss of a small, protected niche.5

Less obvious but equally important: open markets create the opportunity for

an ecosystem to emerge in which innovators can create compatible added-

value add-ons, each finding their own niche in the ecology. For example, the

definition of standardized slots and connectors in car dashboards provides

customers with an enormous choice of entertainment options, both directly

from the car manufacturer or as an “after market” upgrade. And of course, a

car owner can upgrade the radio to replace the tape player with a CD player

or the CD player with an iPod dock at any time, without having to replace the

whole car! In fact, the creation of a value-enhancing ecosystem that allows

many participants to benefit is often the single most important predictor for

widespread adoption of a standard for technology.

There are numerous proof points in IT for both the benefits of open specifications

and the importance of an ecosystem. The database market boomed with the adop-

tion of the SQL open standard, in part because a variety of vendors could offer

value-added tools for monitoring, tuning, and so on, and because skills such as

database design became more portable. The personal computer market exploded

when IBM established the PC as a dominant format, which allowed:

•	 Software authors to target one common base of customers rather than a dozen

fragmented markets and

•	 Peripheral manufacturers to consolidate their costs around a single technical

standard

In the world of development tools, agreement to use the Unified Modeling

Language meant that modeling tool vendors no longer “competed” over fine

distinctions between the shapes of lines and boxes, and instead competed on the

effectiveness of their products in promoting business value derived from ways to

leverage a common language. As a direct result, customers were able to choose

Highlights

For many years, the word "standard"

in IT was doublespeak for "dominant

proprietary product."

The database market boomed

with the adoption of the SQL open

standard, in part because a variety of

vendors could offer value-added tools

for monitoring, tuning, and so on,

and because skills such as database

design became more portable.

Business value of open collaboration
Page 9

from a wide variety of UML-compliant tools satisfying every need from the

simplest to the most sophisticated, without having to risk locking themselves

into the future prospects of a single technology vendor, and the modeling

tools market flourished. More recently, the establishment of the Open Docu-

ment Format (ODF) has allowed many different vendors to offer word proces-

sors and office suites in competition with Microsoft, whose proprietary format

used to determine the “standard” in that market. Many user organizations

are mandating ODF because an open standard guarantees them the crucial

ability to access their own documents in the future without being governed

by the decisions of one company.

Today, the IT industry has, for the most part, embraced open markets, and

it is rare to see a new technology initiative launch without a corresponding

roadmap for establishing an open specification. However, as the examples

above show, “open” comes in various flavors, ranging from a dominant

proprietary format that is widely licensed to formal standard approved by an

independent international body, and it’s important to choose the right one for

the business objectives at hand. The question that must be asked – and that

is all too often is overlooked – is simply: What must be standardized in order

to increase business value and decrease business cost?

Open Standards
The most common meaning of “open” concerns itself with standardization

of the behavior of software. For example, the purchaser of a standards-

compliant SQL database or a JEE application server can be confident that the

software will produce the same essential results, regardless of the supplier.

Of course, each vendor is still free to compete on quality, reliability, cost,

support, and extensions of functionality beyond the standard; and to patent

or keep as trade secrets uniquely effective methods of implementing that

standard behavior. Thus, the benefits of open standards can be compared to

the many standards for implementation that are commonplace in industry

and engineering, such as DIN, ISO, ANSI, etc. Open standards gained broad

adoption in IT during the 1980s, a period that saw the emergence of cross-

industry organizations such as the OMG, Open/X and the IETF.6

Open Source
The 1990s saw the commercial rise of a new meaning of “open”: open

source.7 In this model, the source code for an application is made freely

Highlights

"Open" comes in various flavors,

ranging from a dominant proprietary

format that is widely licensed to

formal standard approved by an

independent international body, and

it's important to choose the right one

for the business objectives at hand.

Business value of open collaboration
Page 10

available to anybody who wishes to use it, subject to certain restrictions

(depending on the specific license used to publish the source code). The most

common restriction is the requirement that any modifications to the source

code must be shared back with other users under the same terms. Unlike

open standards, which promote common behavior, open source promotes

common implementations. There are few parallels outside of software to the

value of open source, because of the unique nature of software. One loose

analogy is to classic books that are out of copyright: the text of that book

might be available in numerous editions from different publishers, includ-

ing hardback, paperback, annotated, collected with other works, and so on.

But even this analogy fails capture the true value of open source software,

much of which comes from the unique flexibility with which software can

be modified, adapted, and extended. In fact, some of the most commercially

significant open source projects have been those that promote a common

“platform” that allows innovators to add value on top without having to

constantly recreate the common parts, and furthermore allows each innova-

tion to enhance the value of all the others in a virtuous spiral. Individual

innovations may themselves be open source, or use conventional commercial

licenses.8

Open interfaces
Most recently in the current decade, a new meaning for “open” has gained

prominence: open interfaces. This model came about from the realization

that often, companies want to integrate a wide variety of tools or processes

that need to be able to exchange information, even though each may not

know or care what the other endpoint does with that information. To under-

stand how powerful this idea is, think of it as being analogous to the electric-

ity supply: you don’t care how the electricity was generated, whether by wind,

coal, or nuclear power; you don’t care what path it took to get to your office or

what voltage transformations it went through on the way. You only care that

when it reaches your power receptacle, it provides the expected voltage and

frequency. Open interfaces in IT provide the means for applications to act

like “utility suppliers” of information to each other.

One of the earliest and most widely known successes for this model was in

the arena of news “syndication.” A very simple standard9 was established that

allowed servers to publish a series of changes as a “feed,” often as news head-

lines and associated stories, and allowed clients to aggregate many different

Highlights

There are few parallels outside of

software to the value of open source,

because of the unique nature of

software.

Open interfaces are analogous to the

electricity supply: you don't care how

the electricity was generated, whether

by wind, coal, or nuclear power. You

only care that when it reaches your

power receptacle, it provides the

expected voltage.

feeds and present them to a user. The servers are free to choose any imple-

mentation, frequency of publishing, and format of their contents that they

want, as long as the description (in other words, the interface) follows the

standard. Conversely, users can choose from a huge variety of ways to view,

organize, and filter their chosen feeds. Today, a vast array of information

sources far beyond traditional news stories — ranging from personal blogs to

system maintenance logs — can be consumed as feeds.

The openness of OSLC
Faced with all these choices, we had to ask ourselves: what kind of “open”

should OSLC be? As we considered the business drivers, we concluded:

•	 Demanding that user companies reskill and retool, or that participat-

ing vendors substantially redevelop their existing products, was not an

option. Therefore, the common implementation approach implied by

open source was not appropriate.

•	 Software development and delivery involves not only many different

tools but also many different approaches, so standardizing the behavior

of even the most commonly used types of tools would make little differ-

ence to the overall challenge. Therefore, the common behavior approach

implied by traditional open standards was not appropriate.

•	 In order to support the diverse array of tools, processes, and business

needs – including many we don’t even yet know about – we realized that

the most important thing to agree on was the interfaces between differ-

ent tools.

By focusing on agreement about the interfaces, we could allow each tool

provider to participate without having to predetermine all the ways that users

might integrate their particular tool, or requiring close relationships with

all the other tool vendors a user might choose. And we could allow each tool

user to integrate their choice of tools in the way that made the most sense

and delivered the most business value in their own circumstances.

We also determined that OSLC interfaces had to satisfy a number of rigorous

requirements, including the following:

•	 Neutral. The interfaces must be both technology- and architecture-

neutral, and could not favor the implementation details of any particular

vendor’s existing product.

Business value of open collaboration
Page 11

Highlights

We realized that the most important

thing to agree on was the interfaces

between different tools.

By focusing on agreement about

the interfaces, each tool provider

participates without having to

predetermine all the ways that users

might integrate their particular tool,

or requiring close relationships with

all the other tool vendors a user

might choose.

Business value of open collaboration
Page 12

•	 Adaptable. It must be feasible to retrofit OSLC interfaces to existing

products. without extensive reengineering of products currently in use.

•	 Universal. This was the most critical and most challenging requirement.

Put simply, it means that any asset, resource or artifact used in the soft-

ware development and delivery lifecycle must be able to reference and

associate itself with any other, regardless of type, location, or implemen-

tation.

As noted earlier, as we considered these requirements, we realized that there

is already an outstanding example that satisfies all of these needs: the Web.

All links are URLs (universal addresses), and they have the critical benefit

that any Web page or online resource can point to any other, without depend-

ing on any knowledge of what is at the other end of the link. In OSLC, we

have adopted exactly the same technical and architectural approach as the

Web itself. OSLC specifications depend on a small set of universal principles:

•	 Any asset can refer to any other asset using just one mechanism, namely

a URL that identifies the location of that asset. Conversely, in order to

make its assets available to any other OSLC-compliant tool, a tool need

only expose an appropriate URL for each asset.

•	 The list of operations that one tool can perform against another is very

short, and is also universal. For instance, a tool can request a resource

from anywhere: directly from another tool, an asset management reposi-

tory, a content management system, a configuration management system,

and so on.10 It can modify that resource. And it can then return the

modified resource to the original tool, which assimilates the changes. If

another tool that provides the same type of resources is substituted, the

integration should not change.

•	 The format, or representation, of a resource is independent of the inter-

nal format, technology, or representation of any particular provider. Fur-

thermore, the requesting tool can ignore any part of the representation

that it doesn’t understand or isn’t concerned with (provided it preserves

the information when it passes it on or passes it back).

In other words, when tools expose OSLC interfaces, the assets that they house

can be linked and used just like a “Web” of software development and deliv-

ery resources. One powerful consequence of this is that OSLC integrations are

“loosely coupled” and independent of the target tool. For example, if one part

Highlights

In OSLC, we have adopted exactly

the same technical and architectural

approach as the Web itself.

When tools expose OSLC interfaces,

the assets that they house can be

linked and used just like a "Web" of

software development and delivery

resources.

of your testing organization is using Tool A from one vendor while another part

is using Tool B from another vendor, your requirements analysts can link their

requirements to test cases in exactly the same way, regardless of which test team

they are collaborating with. And if the requirements analysts decide to switch to a

different requirements tool, it does not disrupt their collaboration with the testers,

provided that the new tool also implements the OSLC interfaces.

The OSLC community
The community approach that we are taking at OSLC is just as critical to its

success as the technology neutrality described above. We recognize that cus-

tomers frequently mix tools from several vendors, as well as open source proj-

ects and home-brewed utilities. Experience proves that any vendor-specified

set of APIs will invariably privilege one vendor’s tools and disadvantage any

others’ – or at the very least, make other vendors suspect this will be the case.

Vendor-specified APIs also leave many partners companies struggling to

catch up as the vendor evolves the API independently or in collaboration only

with its closest partners, leading to suspicion and reluctance to participate

by competing vendors. The result has been the fractured and unsatisfactory

integration landscape of the past, as described at the beginning of this paper.

Therefore, to promote community involvement and ensure transparency, all

of the work of OSLC is taking place in the open, at http://open-services.net.

There, OSLC is organized by domain-specific working groups in areas such

as Change Management, Requirements Management, Quality Management,

Project Estimation, and Metrics. Each work group defines and prioritizes the

scenarios, describes the scope of each iteration, and writes the specifications

for interacting with tools in their domain of interest.

So that the overall objectives of OSLC are met within each working group – and

to avoid the creation of silos that do not interoperate – the project leads from the

OSLC working groups coordinate their work across the domain areas. The project

leaders also collaborate on topics of common interest and in sharing design best

practices that they discover in the course of their work.

To ensure that the content developed for OSLC is broadly consumable, OSLC has

adopted two important intellectual property policies. Firstly, all content posted to

the site is covered under a Creative Commons license (see Box 2), which has very

Business value of open collaboration
Page 13

Highlights

We recognize that customers

frequently mix tools from several

vendors, as well as open source

projects and home-brewed utilities.

To promote community involvement

and ensure transparency, all of the

work of OSLC is taking place in the

open, at http://open-services.net.

http://open-services.net

Business value of open collaboration
Page 14

liberal usage rights. This license allows anybody to freely use the specifications

without any license fee or restrictive agreement. Companies don’t even have to be

members of OSLC to use the specifications: they are freely available to everybody.

Secondly, all contributors to an OSLC specification publish a patent non-assert

covenant, promising not to assert any “necessary claims” against implementations

of the specifications. These policies have been important in securing the partici-

pation of both open-source and commercial concerns. OSLC participants include

individuals from software vendors, open source projects. systems integrators,

industry IT teams, and the academic community.11

Conclusion
Overcoming the challenges of tool interoperability isn’t easy, but it is

important to teams that apply tools as they endeavor to differentiate their

businesses. It’s important to tool providers who face demands for an ever-

increasing set of pairwise integrations. And we would argue that it’s impor-

tant to the industry as a means of breaking software delivery resources out

of the IT silo and making them more accessible and interoperable with the

broader business processes. OSLC seeks to change the game, but in a practi-

cal way, learning from the lessons of the past and building on the success of

the Internet.

One thing that is clear: OSLC gets better with participation. The more people

involved, the better chance we have to establish real collaboration across the

lifecycle. If you have something to contribute, we encourage you to join in at

http://open-services.net.

Highlights

Overcoming the challenges of

tool interoperability isn't easy,

but it is important to the industry

as a means of breaking software

delivery resources out of the IT silo

and making them more accessible

and interoperable with the broader

business processes.

http://open-services.net

Business value of open collaboration
Page 15

Appendix A: The technical architecture of OSLC
To collaborate across the software lifecycle, the most basic technical capa-

bility is the need to create and manage navigable relationships between

“resources” or assets. Resources include everything from requirements to

code to test cases to configurations. Complicating matters, some of these

resources can be complex formatted documents such as a requirements speci-

fication; others are collections of other resources, such as a configuration;

others are artifacts created by the process itself, such as a build log. All of

these different kinds of resources need to be treated in a uniform way if tools

are to be able to link their assets to each other without hard-coded fore-

knowledge of the target endpoint.

Identifiable and addressable: The value of URL-accessible data
On the Web, this problem has been solved. All links are URLs (universal

addresses), and they have the critical benefit that any Web page or resource

can point to any other, without depending on any knowledge of what is at the

other end of the link. In OSLC, we wanted to create a similar means of relat-

ing resources that, like the Web, satisfied three basic criteria:

•	 It must be vendor- and technology-independent: it must provide a way

for any vendor’s representation of a test case, for instance, to point to any

other vendor’s requirement.

•	 It must be location-independent: resources are scattered across multiple

repositories and tools, possibly widely or even globally dispersed. And

those resources can move from time to time.

•	 It must be able to solve the problems we don’t yet know about, not just

the ones we do: the future will certainly bring new types of asset into the

lifecycle, as well as new styles of integration and aggregation. Like the

Web itself, the linking mechanism must be flexible enough to adapt to

change.

Identification and location are the most fundamental parts of any digitally

based interoperability story. Like the Web, every resource in OSLC has a

unique address that tells any other tool how to locate it – in other words, a

URL. It is impossible to overstate the fundamental importance of having

URL-accessible data. This is what makes an application’s data identifiable
and addressable from any other application, in a completely technologically

neutral fashion. A tool that needs to refer to a resource used by another tool,

such as a test tool with a test case that references a requirement, need store

Highlights

The most basic technical capability

is the need to create and manage

navigable relationships between

"resources" or assets. On the Web,

this problem has been solved.

Business value of open collaboration
Page 16

only the URL that identifies that resource, just like one Web page linking to

another. By contrast, many existing ALM tools rely on proprietary naming

schemes that require deep knowledge of the tool’s technology to resolve.12

Having a uniform way to identify and locate resources is essential, but by itself

merely allows us to establish pointers or references from one resource to another.

In order to create more useful integrations, we need one more thing: a standard-

ized “interface,” or common set of services, that are available for resources. Again,

the Web has provided an answer for us that we leverage in OSLC: a small set of

actions that can be used identically from any tool to any other tool, regardless

of the type of resource or the technical implementation. OSLC uses a style of

integration called REST to fetch or modify any resource, regardless of its type or

location that ensures that tools remain independent of each other’s implementa-

tion details. In a RESTful architecture, clients initiate requests to servers using a

small set of general-purpose services. Servers process those requests and return

appropriate responses.13

Representations
In OSLC as on the Web, the notion of a resource is very general. It could be

a requirement, a work item, or even a Web page that enables a user to create

or select from a list of resources that meet certain criteria. These are all

resources, identified by their URLs.

URLs, along with a RESTful architecture, allow us to locate and access such

a resource, which is often useful by itself, but, by design, these URLs do not

provide a tool with any information about what’s “inside” the resource: the

content is still unknown. For example, a requirement could be represented

by a text document describing the requirement, an image showing a screen

mockup, an XML document defining the attributes of the requirement, or

any one of many other representations. A test case management tool that

wants to verify the existence of a test-case for every requirement need not

understand the requirement’s contents; it need only confirm its existence and

location (i.e., its URL). When the tool’s users want to see or edit the contents

of the requirement, it functions exactly like a browser: it navigates the link to

retrieve the resource and hands it to an appropriate tool that understands the

resource type.14

Highlights

In order to create more useful

integrations, we need one more

thing: a standardized "interface,"

or common set of services, that are

available for resources. Again, the

Web has provided an answer for us.

Business value of open collaboration
Page 17

Although we value this flexibility, we can do more with the resources when

we know some details about their format. Therefore, much of the work in

OSLC working groups is to define agreed-upon resource representations.

With this information, any tool can examine the common elements of these

resources; this allows much deeper integration between tools. For example,

a tool could view and modify the description of any lifecycle resource. A

quality management tool might refer to a requirement stored in a require-

ments management tool and be able to reflect whether associated test cases

pass or fail. A configuration management tool might flag tests stored in a test

case management tool as needing to be run during the next regression test

because relevant code modules have been changed. A management console

might pull information from a wide variety of tools to produce a consolidated

view of project progress and status. And, just like the Web, the retrieved

representation of a resource might contain links to further resources: for

example, a defect implicates a code module that is tested by a test case that

satisfies a requirement. Each of these links exploits the same mechanisms:

URLs and uniform services.

Appendix B: Creative Commons Licenses and Copyrights
OSLC chose to publish its specifications under Creative Commons licenses so

that everybody could adopt those specifications with confidence. A Creative

Commons license is a mechanism that allows a copyright holder, such as the

authors of an OSLC specification, to renounce certain rights that they would

normally have under copyright law, while retaining others. This mechanism

is what allows any implementer to take and use the published OSLC specifi-

cations without risk that some kind of license claim will be enforced against

them.

Critically, a Creative Commons license cannot be revoked: for example, if

a vendor implements the published Change Management 1.0 specification,

the copyright owners can never revoke that vendor’s permission to use that

specification in the ways initially permitted.

More information about Creative Commons is online at http://creativecom-

mons.org

Highlights

Much of the work in OSLC working

groups is to define agreed-upon

resource representations. With this

information, any tool can examine

the common elements of these

resources; this allows much deeper

integration between tools.

http://creativecommons.org
http://creativecommons.org

© Copyright IBM Corporation 2009

IBM Corporation

Software Group

Route 100

Somers, NY 10589

U.S.A.

Produced in the United States of America

December 2009

All Rights Reserved

IBM, the IBM logo, ibm.com and Rational are

trademarks or registered trademarks of International

Business Machines Corporation in the United States,

other countries, or both. Other company, product, or

service names may be trademarks of IBM or other

companies.

A current list of IBM trademarks is available on the

Web at “Copyright and trademark information” at

www.ibm.com/legal/copytrade.shtml

The information contained in this document is

provided for informational purposes only. While

efforts were made to verify the completeness

and accuracy of the information contained in this

documentation, it is provided “as is” without warranty

of any kind, express or implied.

RAW14207-USEN-00

Endnotes

1 In July 2008, Google announced that its Web search surpassed one trillion unique URLs.

2 Some commercial content providers have objected to a practice known as “deep linking” because it
bypasses their ability to control a site visitor’s access path or to enforce subscription payments. How-
ever, this is an issue of business models, not of technology.

3 Ironically, the DVD standard was itself almost derailed before it even started by an eerily similar format
war. The intervention of IBM, which rallied other computer vendors to agree to boycott both camps
unless they compromised on a unified specification, is a little-known story in the success of DVD.

4 Such situations are so common that the IT industry needs a term for these “de facto” standards, as con-
trasted with “de jure” standards, which are standards established by an independent body and available
equitably to any market participant.

5 Imagine how much the value of mobile phones would be diminished if, for example, customers of
Sprint could only call other customers of Sprint, and customers of Verizon only other Verizon custom-
ers. Extraordinary as it now sounds, that is in fact exactly how email worked in the early days of online
access. Subscribers to one online service could only email customers on the same service. Even today,
the instant messaging services provided by various Web portal providers pursue this same “walled
garden” approach.

6 Some basic standards have existed from the earliest days of IT, especially in areas strongly influenced
by IT’s highly standardized cousin, telecommunications. For instance, ASCII dates back to the 1960s,
and other early examples include the programming languages COBOL and FORTRAN. However, it was
not until the 1980s that higher levels of system behavior were widely standardized.

7 The open source movement had been influential in academic circles for at least two decades before
it began to impact commercial software adoption, for example at MIT in the GNU project. However, the
impact on commercial IT rose dramatically with the creation of Linux in the early 1990s and the Apache
Web server in the mid 1990s.

8 One highly successful example of this model is the Eclipse Foundation: see http://eclipse.org/

9 In fact there are two competing standards that are widely used today, RSS and Atom. Although they
differ in detail, both serve the purpose described here, and both share the distinction of standardizing
only the interface between servers and clients. The name RSS is often used casually to include both
standards.

10 Technically speaking, this is a “representation” of the resource. See Appendix A for a more detailed
explanation of this distinction.

11 Learn more about OSLC community members at http://open-services.net/html/Snapshot.html

12 For example, one tool may require you to know the case-sensitive name of a requirement. Another
may require the use of an internally-generated serial number. A third may provide a persistent “handle”
that can only be decoded by calling a proprietary API. In order to make use of any of these reference
mechanisms, the referring tool must know both what kind of reference it is dealing with, and also what
tool it refers to.

13 For a more rigorous and complete definition of REST, see Roy Fielding’s PhD dissertation, in particular
Chapter 5, available online at http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm.

14 For example, if the user of a browser clicks on a link to a PDF document, the browser will ask Adobe
Acrobat to handle the document that is returned from the server. If the link points to a document in Open-
Document Text (ODT) format, the browser will use whatever tool is available that supports ODT.

http://eclipse.org/
http://open-services.net/html/Snapshot.html
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

