
Tutorial: Integrating
products with OSLC
Tutorial Overview! 4

Organization

Audience

Introduction

Overview of OSLC! 6

Running the example applications! 7
Installing prerequisites

Downloading, building, and running the sample applications

Implementing an OSLC provider! 12

Planning out a partial implementation of OSLC-CM!13
Different approaches to implementing OSLC support

Architecture for the adapter

Providing Service Providers and Catalogs! 16
Clients don’t need to form URLs

Basic application architecture

Providing a Service Provider Catalog

Retrieving and displaying details about a Service Provider

Providing RDF+XML or JSON representations of Service Providers
and Service Provider Catalogs

Providing OSLC representations of Bugzilla bugs!29
What is OSLC4J?

Defining OSLC resources with OSLC4J

Providing OSLC representations of Bugzilla bugs

Providing UI Previews! 38
Add UI Preview handling to the BugzillaChangeRequestService
class

Providing a delegated UI for selection and search!45
Adding the location of delegated UI dialogs to Service Providers

Adding the dialog to search for and select bugs

Creating the delegated UI for selection

Providing a delegated UI for creating bugs! 52
Adding the location of the delegated UI for creation to Service
Providers

Creating a bug from an OSLC BugzillaChangeRequest

Displaying the delegated UI to create new bugs

Providing a creation factory! 60
Adding a method to the adapter to create BugzillaChangeRequests
via HTTP POST

Providing a ResourceShape document

Wrapping up

Integrating with an OSLC provider! 65

Sample use cases for an OSLC-CM Consumer! 66
A Plan of Action

Implementing links and UI previews! 68
Introducing OSLC UI Preview

Implementing OSLC UI Preview

Implementing OSLC Delegated UIs! 76
Introduction to OSLC Delegated UI

Parsing the Service Provider Documents

Adding Delegated UI dialogs to the NinaCRM

Results

Implementing a “Customers to notify” page! 85
Fetching an OSLC resource with HTTP GET

Parsing an OSLC resource

The power of OSLC representations

Implementing automated bug creation! 91
Using a Service Provider Catalog to find a Service Provider.

Using a Service Provider to find a Creation Factory

Using a Resource Shape to determine required properties

Forming an RDF/XML representation of a Bugzilla bug

Using HTTP to POST a new bug

Tutorial Overview
This tutorial explains how to integrate tools with OSLC. The tutorial uses examples,
starting with simple ones and building to more advanced topics such as implementing
an OSLC Provider. It is organized into three parts:

• OSLC consumer topics
• OSLC provider implementation topics
• Advanced topics

It's intended for software developers with knowledge of the basics of web architecture,
HTTP, RDF, and associated topics.

Organization
We start with a quick tour, showing OSLC in a nutshell, then present the story of how
Nina improves her company's ALM process by integrating tools via OSLC.

• In Part 1, we start with the basic topics on the consumer side, explaining how Nina
integrates her existing home-grown CRM web application with an OSLC Change
Management (CM) provider. We'll explore UI Preview, HTTP operations on resources,
and Delegated UI.

• In Part 2, we see how Nina enhanced her company's home-grown Defect Tracking
system to support just enough of the OSLC CM specification to support the
integrations developed in Part 1.

Audience
This tutorial is written for those who will be working directly with OSLC specifications, at
the code level and implementing OSLC consumers and providers. If you are part of this
audience, then you:

• Understand basics of software development
• Understand basics of web architecture and HTTP
• Understand basics of Linked Data and RDF
• Are abie to follow examples in XML, JSON, HTML, and JavaScript
• Are eager to learn more about those topics and OSLC

We try hard to keep this tutorial programming language agnostic; when we do have to
show server-side logic we use Java and JSP to do so. Later versions of this document
might expand to other languages and platforms. OSLC is a community effort and we'd
love your help in adding examples in different programming languages to this tutorial, or

new tutorials, to help those on other platforms such as Perl, PHP, Python, Ruby, and
the .Net languages.

Introduction
Welcome to the OSLC Tutorial. The goal of this document is to explain how to
implement OSLC consumers and providers by examining realistic use cases and
showing how to implement each in detail with lots of examples and working code.

We'll start simple, explaining how to interact and integrate with an OSLC-CM v2
provider. Then, we will progressively introduce more advanced features and build your
knowledge to the point where you'll be able to build a complete OSLC provider
implementation. As we progress, we will help you to follow along by looking at code for
an OSLC consumer and OSLC provider and by exploring OSLC resources using the
Firefox or Chrome Poster plugin.

To bring our examples to life, we'll tell the story of Nina, a developer and sysadmin who
handles development infrastructure and uses OSLC specifications to integrate systems
and put in place more efficient and effective work-flows for her team.

Following along

One of the best ways to learn a new technology is to experiment with it. In that spirit,
you can follow along with the OSLC Tutorial by using the following software:

• NinaCRM: A fictional Customer Relationship Management (CRM) system that hosts
OSLC UI Preview and OSLC Delegated UI examples, implemented as a Java EE web
application. Get it from the OSLC Tools project on SourceForge. In the examples we
assume that NinaCRM is installed at http://localhost:8181/ninacrm.

• OSLC Bugzilla Adapter: This is the adapter that Nina develops in Part 2, an OSLC
Adapter for Bugzilla that implements the OSLC-CM specification. You can get it from
the OSLC Tools project on SourceForge. In the examples, we assume this is installed
at http://localhost:8282/bugz.

• Firefox or Chrome Poster plugin: This plugin makes it easy to issue HTTP requests
supporting GET, PUT, POST and DELETE and setting headers. Examples show how
to use Poster to manipulate OSLC resources.

The Appendix explains how to install and run the above software. Now let's quickly
introduce OSLC so we can get started with the story.

http://open-services.net/bin/view/Main/CmSpecificationV2
http://open-services.net/bin/view/Main/CmSpecificationV2
http://localhost:8181/ninacrm
http://localhost:8181/ninacrm
http://localhost:8282/bugz
http://localhost:8282/bugz

Overview of OSLC
See a video overview of OSLC here: http://www.youtube.com/watch?
feature=player_embedded&v=40mjwqGEKBU

Open Services for Lifecycle Collaboration (OSLC) is an initiative to define standards
that enable easier and more effective integrations between the many tools that software
and product developers use. OSLC is a different approach to tool integration that seeks
to integrate the resources managed by those tools into the web of data. OSLC uses
variety of web integration patterns, which are all either based on or complementary to
what the World Wide Web Consortium (W3C) calls Linked Data.

To learn more about core OSLC concepts and architectural underpinnings, read the
OSLC Primer. We’ll be implementing many of these core resources and services in this
tutorial.

For more information on the value of integrating with open protocols, read our
whitepaper “The Case for Open Services”.

http://www.youtube.com/watch?feature=player_embedded&v=40mjwqGEKBU
http://www.youtube.com/watch?feature=player_embedded&v=40mjwqGEKBU
http://www.youtube.com/watch?feature=player_embedded&v=40mjwqGEKBU
http://www.youtube.com/watch?feature=player_embedded&v=40mjwqGEKBU
http://www.w3.org/standards/semanticweb/data
http://www.w3.org/standards/semanticweb/data
http://open-services.net/resources/tutorials/oslc-primer/
http://open-services.net/resources/tutorials/oslc-primer/
http://open-services.net/resources/whitepapers/the-case-for-open-services/
http://open-services.net/resources/whitepapers/the-case-for-open-services/

Running the example applications
This section explains how to run the OSLC4J Bugzilla Adapter and the NinaCRM
example application.

Installing prerequisites
Downloading and installing Eclipse

You’ll be using Eclipse and some add-ons to simplify the setup.

You need Eclipse 3.6 or later. Download Eclipse here. Download the Eclipse IDE for
Java EE Developers.

After you install Eclipse, start the Eclipse application.

In the Workspace Launcher window, create a new directory for your Eclipse workspace
or accept the default Workspace location.

Installing EGit

All of the samples are in Git source control; EGit provides a GUI to work with Git
repositories.

1. In Eclipse, click Help → Install New Software.
2. In the Install window, in the Work with field paste in the following: http://

download.eclipse.org/egit/updates
3. Click Add….
4. In the Add Repository window, in the Name field, type something memorable like

EGit, then click OK.
5. Select Eclipse Git Team Provider and click Next.
6. On the Install Details page, click Next.
7. On the Review Licenses page, review the license, select I accept the terms of the

license agreement and click Finish.
8. After EGit installs, on the Software Updates window click *Yes to restart Eclipse.

Installing M2Eclipse

Our samples use the Maven build automation tools; you’ll use the M2Eclipse Maven
plugin to manage Maven from Eclipse.

1. In Eclipse, click Help → Install New Software.

http://eclipse.org/downloads/
http://eclipse.org/downloads/
http://download.eclipse.org/egit/updates
http://download.eclipse.org/egit/updates
http://download.eclipse.org/egit/updates
http://download.eclipse.org/egit/updates

2. In the Install window, in the Work with field paste in the following:
http://download.eclipse.org/technology/m2e/releases

3. Click Add….
4. In the Add Repository window, in the Name field, type something memorable like

M2Eclipse, then click OK.
5. Select Maven Integration for Eclipse and click Next.
6. On the Review Licenses page, review the license, select I accept the terms of the

license agreement and click Finish.
7. After M2Eclipse installs, on the Software Updates window, click “Yes” to restart

Eclipse.

Installing the OSLC4J toolkit
1. In Eclipse, open the Git Repositories view. (Window → Show View → Other,

search for Git repo and click OK.)
2. Click Clone a Git Repository.
3. In the Clone Git Repository window, in the URI field paste the following:

git://git.eclipse.org/gitroot/lyo/org.eclipse.lyo.core.git
The Host and Repository fields will autofill. Leave the Username and Password
fields empty.

4. Click Next.
5. On the Branch Selection page, select master and click Next.
6. For the Destination, select a folder for the files or accept the default of your Eclipse

workspace.
7. Click Finish. org.eclipse.lyo.core will appear in the Git Repositories view.
8. In the Git Repositories view, right-click org.eclipse.lyo.core and click Import

Projects.
9. In the Import Projects from Git Repository wizard, select Import existing projects

and click Next.
10.Select all components of OSLC4J core (this is the default) and click Finish.

Next, build the OSLC4J project.

Build the OSLC4J projects
1. In Eclipse, open the Project Explorer view. (Window → Show View → Project

Explorer)
2. In the Project Explorer view, expand OSLC4JCoreRelEng.
3. Right-click on pom.xml, then click Run as → Maven Clean.
4. Right-click on pom.xml, then click Run as → Maven Install. In the Console view,

you’ll see a lot fly by.

[Optional] Create an account at Bugzilla Landfill

Landfill is an always-running, open Bugzilla server that you can use if you don’t want to
use your own Bugzilla application or set up a new one.

http://download.eclipse.org/technology/m2e/releases
http://download.eclipse.org/technology/m2e/releases

Create an account here.

Downloading, building, and running the sample
applications
Cloning the Lyo documentation and server repositories

The Eclipse Lyo documentation Git repository has the Bugzilla Adapter and NinaCRM
sample applications.

1. In Eclipse, open the Git Repositories view. (Window → Show View → Other,
search for Git repo and click OK.)

2. Click Clone a Git Repository.
3. In the Clone Git Repository window, in the URI field paste the following:

git://git.eclipse.org/gitroot/lyo/org.eclipse.lyo.docs.git
The Host and Repository fields will autofill. Leave the Username and Password
fields empty.

4. Click Next.
5. On the Branch Selection page, select master and click Next.
6. For the Destination, select a folder for the files or accept the default of your Eclipse

workspace.
7. Click Finish. org.eclipse.lyo.docs will appear in the Git Repositories view.
8. Repeat steps 2–7 for the server repository at git://git.eclipse.org/gitroot/lyo/

org.eclipse.lyo.server.git.

Next, import the documentation projects:

1. In the Git Repositories view, right-click org.eclipse.lyo.docs and click Import
Projects.

2. In the Import Projects from Git Repository wizard, select Import existing projects
and click Next.

3. Select OSLC4JBugzilla and ninacrm and click Finish.

Finally, import the server projects:

1. In the Git Repositories view, right-click org.eclipse.lyo.server and click Import
Projects.

2. In the Import Projects from Git Repository wizard, select Import existing projects
and click Next.

3. Select the following projects:
4. org.eclipse.lyo.server.oauth.consumerstore
5. org.eclipse.lyo.server.oauth.core
6. org.eclipse.lyo.server.oauth.webapp
7. and click Finish.

https://landfill.bugzilla.org/bugzilla-4.2-branch/createaccount.cgi
https://landfill.bugzilla.org/bugzilla-4.2-branch/createaccount.cgi

Configuring the Bugzilla adapter

Configure the Bugzilla adapter to point to your Bugzilla application.

1. In Eclipse, open the Project Explorer view. (Window → Show View → Project
Explorer)

2. In the Project Explorer view, find and edit the file OSLC4JBugzilla/src/main/
resources/bugz.properties.

3. Edit the bugzilla_uri property to the URL of your Bugzilla server.
If you’re using Bugzilla Landfill, it will look similar to this:
bugzilla_uri=https://landfill.bugzilla.org/bugzilla-4.2-branch
There are multiple versions of Bugzilla running at landfill.bugzilla.org; be sure to
select the version where you have a user ID.

4. For the admin property, provide your Bugzilla user ID.
For Bugzilla Landfill, it will be the email address you used when you created your
account:
admin=you@example.com
(This is the ID you will use to log in to the OAuth application).

5. Save bugz.properties.

Building the applications

First, update the project configurations for the projects.

1. In Eclipse, open the Package Explorer view. (Window → Show View → Package
Explorer)

2. In the Package Explorer view, select the following packages:
3. ninacrm
4. org.eclipse.lyo.server.oauth.core
5. org.eclipse.lyo.server.oauth.consumerstore
6. org.eclipse.lyo.server.oauth.webapp
7. OSLC4JBugzilla
8. Right-click and select Maven → Update Project.
9. In the Update Maven Project window, verify that those 4 projects are selected and

click OK.

Next, install the projects:

1. In the Package Explorer view, expand org.eclipse.lyo.server.oauth.core.
2. Find the file pom.xml
3. Right-click on pom.xml and select Run as → Maven Install. You should eventually

see a success message in the Console view.
4. Repeat steps 1–3 for the following packages in this order:

a. org.eclipse.lyo.server.oauth.consumerstore
b. org.eclipse.lyo.server.oauth.webapp
c. OSLC4JBugzilla

https://landfill.bugzilla.org/bugzilla-4.2-branch
https://landfill.bugzilla.org/bugzilla-4.2-branch
mailto:you@example.com
mailto:you@example.com

d. ninacrm

Running the sample applications

STARTING THE OSLC4J BUGZILLA ADAPTER:
1. In Eclipse, click Run → Run Configurations.
2. In the Run Configurations window, expand Maven Build.
3. Click OSLC4JBugzilla.
4. Click Run. This will start the application.

You will see a lot of messages in the Console view. The application will be running when
you see this:

[INFO] Started Jetty Server
[INFO] Starting scanner at interval of 5 seconds.

In your web browser navigate to the OSLC Catalog at http://localhost:8080/
OSLC4JBugzilla/services/catalog/singleton

Log in with your Bugzilla user ID and password.

STARTING NINACRM

• In Eclipse, click Run → Run Configurations.
• In the Run Configurations window, expand Maven Build.
• Click Launch NinaCRM.
• Click Run. This will start the application.

When the server starts, in your web browser navigate to http://localhost:8181/ninacrm to
see the NinaCRM example.

http://localhost:8080/OSLC4JBugzilla/services/catalog/singleton
http://localhost:8080/OSLC4JBugzilla/services/catalog/singleton
http://localhost:8080/OSLC4JBugzilla/services/catalog/singleton
http://localhost:8080/OSLC4JBugzilla/services/catalog/singleton
http://localhost:8181/ninacrm
http://localhost:8181/ninacrm

Implementing an OSLC provider
In this section, we’ll be creating an adapter to add OSLC Change Management support
to Bugzilla, an open source Defect Tracking system. Although the Bugzilla adapter is
available now as part of Eclipse Lyo, its features and architecture are broadly applicable
to any adapter that adds OSLC support to an existing product.

This video explores some of the challenges and considerations in getting started with
adding OSLC support to existing applications: http://www.youtube.com/watch?
feature=player_embedded&v=-oXqudLmNMI

http://open-services.net/bin/view/Main/CmSpecificationV2
http://open-services.net/bin/view/Main/CmSpecificationV2
http://www.bugzilla.org/
http://www.bugzilla.org/
http://www.youtube.com/watch?feature=player_embedded&v=-oXqudLmNMI
http://www.youtube.com/watch?feature=player_embedded&v=-oXqudLmNMI
http://www.youtube.com/watch?feature=player_embedded&v=-oXqudLmNMI
http://www.youtube.com/watch?feature=player_embedded&v=-oXqudLmNMI

Planning out a partial implementation of
OSLC-CM
Our integration use cases that we want to add to Bugzilla require only a partial
implementation of the OSLC Change Management specification:

• Service Provider and Catalogs: These resources describe the services offered and
make it possible for consumers of the OSLC CM service to find the ones they need. In
Part 2, you will use these to help implement Automated Bug Creationso that the
Testing team’s build scripts can use Service Provider documents to locate a URL.

• OSLC representations for bugs: This means making each Bug available at a stable
URI as an OSLC-CM Change Request resource, with RDF/XML and UI Preview
representations via content negotiation. In Part 2, these RDF/XML representations will
help automate customer notifications.

• Delegated UI for Creation & Selection: Enables users of other systems to create
and select bugs in Bugzilla without leaving the web UI of those other systems. You’ll
use these dialogs in Part 2’s to make it easy to link a customer incident to a Bugzilla
bug.

• Creation Factories for bugs: Enables creation of new bugs by HTTP posting RDF/
XML bug representations to the server. We also used this feature in Part 2 for
Automated Bug Creation.

Although this leaves out some seemingly critical parts of OSLC (including UPDATE and
DELETE via HTTP and OSLC Query), that’s OK.

First, though, we need to decide how we’ll add OSLC support to the existing
applications.

Different approaches to implementing OSLC support
There are (broadly) three different approaches to implementing an OSLC-CM provider
for Bugzilla (or any other software):

• The Native Support approach is to add OSLC-CM support directly into Bugzilla,
modifying whatever code is necessary to implement the OSLC-CM specification.

• The Plugin approach is add OSLC-CM support to Bugzilla by developing code that
plugs-in to Bugzilla and uses its add-on API.

• The Adapter approach is to create new web application that acts as an OSLC
Adapter, runs along-side of Bugzilla, provides OSLC-CM support and “under the hood”
makes calls to the Bugzilla web APIs to create, retrieve, update and delete resources.

Although any of these approaches are valid approaches for an OSLC implementation,
here are some of the pros and cons of each:

http://open-services.net/bin/view/Main/CmSpecificationV2
http://open-services.net/bin/view/Main/CmSpecificationV2
http://open-services.net/resources/tutorials/integrating-products-with-oslc/integrating-with-an-oslc-provider/automated-bug-creation/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/integrating-with-an-oslc-provider/automated-bug-creation/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/integrating-with-an-oslc-provider/implementing-a-customers-to-notify-page/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/integrating-with-an-oslc-provider/implementing-a-customers-to-notify-page/
http://open-services.rtp.raleigh.ibm.com/resources/tutorials/integrating-products-with-oslc/integrating-with-an-oslc-provider/making-incident-to-defect-linking-easy/
http://open-services.rtp.raleigh.ibm.com/resources/tutorials/integrating-products-with-oslc/integrating-with-an-oslc-provider/making-incident-to-defect-linking-easy/
http://open-services.rtp.raleigh.ibm.com/resources/tutorials/integrating-products-with-oslc/integrating-with-an-oslc-provider/making-incident-to-defect-linking-easy/
http://open-services.rtp.raleigh.ibm.com/resources/tutorials/integrating-products-with-oslc/integrating-with-an-oslc-provider/making-incident-to-defect-linking-easy/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/integrating-with-an-oslc-provider/automated-bug-creation/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/integrating-with-an-oslc-provider/automated-bug-creation/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/integrating-with-an-oslc-provider/automated-bug-creation/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/integrating-with-an-oslc-provider/automated-bug-creation/

Approach Pros Cons

Native approach • Complete control over
the quality
implementation

• Good approach for tool
vendors shipping
products with OSLC
support

• You need control over
the application code

• You need to learn
product's language and
platform

• Not a good approach for
customers who want to
add OSLC support to a
vendor's products

Plugin Approach • Uses established and
supported mechanism to
extend product and add
OSLC support

• Limitations on plugins
may limit quality of OSLC
implementation

• You need to learn
product's language,
platform, and plugin
architecture

Adapter Approach • Can be implemented
without modifying the
product

• Can use your preferred
platform and language

• Limitations of product's
API may limit quality of
OSLC implementation

• May introduce redundant
URL for product
resources. For example,
adapter-provided URLs
must be used instead of
native Bugzilla bug URLs

In short, the Native approach is the right approach for tool vendor who wants to add
OSLC support to the products that they understand well. The Plugin and Adapter
approaches are best for when you want to add OSLC support to a tool that you’ve
bought from a tool vendor or obtained from an open source project. If the tool has a
good Plugin API and you like the language/platform that it requires, then try the Plugin
approach. If not, then an Adapter approach is probably best.

In our case, building an adapter makes the most sense.

Architecture for the adapter
Download the OSLC4J Bugzilla adapter. We’ll be exploring the adapter instead of
writing one from scratch.

http://open-services.net/resources/tutorials/integrating-products-with-oslc/running-the-examples/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/running-the-examples/

The OSLC4J Bugzilla adapter is a RESTful web application built on Java EE with JAX-
RS. It has the following additional dependencies:

• OSLC4J: part of Eclipse Lyo, OSLC4J is a Java toolkit that simplifies building OSLC
applications

• J2Bugzilla: Java wrapper classes for Bugzilla’s XML-RPC based web services
interface

In addition, it uses the following helper classes (in the utils directory):

• BugzillaHttpClient: helper classes for doing HTTP GET requests against a Bugzilla
server

• HttpUtils: helper classes for working with HTTP requests and responses
• StringUtils: helper classes for dealing with strings
• XmlUtils: helper classes for XML processing

Finally, the JAX-RS resource definitions are in
org.eclipse.lyo.oslc4j.bugzilla.services.

NOTE: In older versions of this tutorial and Bugzilla adapter, we defined many individual
servlets in the application's web.xml file; now, the OSLC4J Bugzilla adapter uses JAX-
RS to handle URLs, requests, and resources.

http://docs.oracle.com/javaee/6/tutorial/doc/giepu.html
http://docs.oracle.com/javaee/6/tutorial/doc/giepu.html
http://docs.oracle.com/javaee/6/tutorial/doc/giepu.html
http://docs.oracle.com/javaee/6/tutorial/doc/giepu.html
http://wiki.eclipse.org/Lyo/LyoOSLC4J
http://wiki.eclipse.org/Lyo/LyoOSLC4J
http://www.eclipse.org/lyo
http://www.eclipse.org/lyo
http://code.google.com/p/j2bugzilla/
http://code.google.com/p/j2bugzilla/
http://web.xml
http://web.xml

Providing Service Providers and
Catalogs
The next step in implementing the OSLC Change Management specification is to
determine what high-level organizational concept in your product best maps to OSLC
Service Providers – the central organizing concept of OSLC that represents a
“container” of resources.

In Bugzilla, bugs are organized by Product. Before you can use Bugzilla, you have to
tell the system which Products exist in order to report bugs against them.

Given that, in our adapter each Bugzilla Product will be represented by an OSLC
Service Provider REST service. Each Service Provider will include URIs for a Delegated
UI for bug selection, a Delegated UI for bug creation, a Query Capability so that bugs
can be queried via HTTP GET, and a Creation Factory so that new bugs can be created
via HTTP POST.

To enable client programs to find the Service Providers provided by Bugzilla (and
because one Bugzilla instance can have multiple Products), we’ll use an OSLC Service
Provider Catalog. When a client wants to connect to Bugzilla, it first fetches the catalog,
which provides a list of Service Providers. In the end, a client can start with the URI of
the one Service Provider Catalog offered by Bugzilla and navigate to the Service
Providers (one per Product in Bugzilla).

Here are the URLs that will be supported with our adapter (running at /
OSLC4JBugzilla/) for our OSLC-CM implementation:

• http://HOST/OSLC4JBugzilla/services/catalog/singleton
This URL will return the OSLC Service Provider Catalog

• http://HOST/OSLC4JBugzilla/services/serviceProviders/
{product_id}
Returns the OSLC Service Provider for the Product identified by {product_id} number

• http://HOST/OSLC4JBugzilla/services/{product_id}/changeRequests
If using HTTP GET, returns a list of bugs in the product identified by {product_id}; if
using HTTP POST, initiates the Creation Factory for creating a new bug and returns
that new bug

• http://HOST/OSLC4JBugzilla/services/{product_id}/
changeRequests/{change_request_id} Returns the Change Request identified
by ID {change_request_id}, in a variety of content-types

• http://HOST/OSLC4JBugzilla/services/{product_id}/
changeRequests/selector This URL is for the delegated UI selection dialog for
the Product identified by ID {product_id}

http://open-services.net/resources/tutorials/oslc-primer/serviceprovider/
http://open-services.net/resources/tutorials/oslc-primer/serviceprovider/
http://open-services.net/resources/tutorials/oslc-primer/serviceprovider/
http://open-services.net/resources/tutorials/oslc-primer/serviceprovider/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-a-delegated-ui-for-selection/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-a-delegated-ui-for-selection/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-a-delegated-ui-for-selection/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-a-delegated-ui-for-selection/
http://open-services.rtp.raleigh.ibm.com/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-a-delegated-ui-for-creation/
http://open-services.rtp.raleigh.ibm.com/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-a-delegated-ui-for-creation/
http://open-services.rtp.raleigh.ibm.com/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-a-delegated-ui-for-creation/
http://open-services.rtp.raleigh.ibm.com/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-a-delegated-ui-for-creation/
http://open-services.net/resources/tutorials/oslc-primer/serviceprovidercatalog/
http://open-services.net/resources/tutorials/oslc-primer/serviceprovidercatalog/
http://open-services.net/resources/tutorials/oslc-primer/serviceprovidercatalog/
http://open-services.net/resources/tutorials/oslc-primer/serviceprovidercatalog/
http://HOST/OSLC4JBugzilla/services/catalog/singleton
http://HOST/OSLC4JBugzilla/services/catalog/singleton
http://open-services.net/resources/tutorials/oslc-primer/serviceprovidercatalog/
http://open-services.net/resources/tutorials/oslc-primer/serviceprovidercatalog/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://open-services.net/resources/tutorials/oslc-primer/serviceprovider/
http://open-services.net/resources/tutorials/oslc-primer/serviceprovider/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/

• http://HOST/OSLC4JBugzilla/services/{product_id}/
changeRequests/creator Returns Delegated UI creation dialog for the Product
identified by ID {product_id}

• http://HOST/OSLC4JBugzilla/services/resourceShapes/changeRequest Returns the
creation and queryResource Shape for Bugzilla bugs

Each of of the URLs above will be handled by a JAX-RS annotated method and our
code will have to be able to form all of those types of URLs. That brings us to an
important point about OSLC:

Clients don’t need to form URLs
With OSLC, there’s rarely any need to form URLs. Clients should not be constructing
URLs, or making assumptions about how URLs are formed; instead they should be
able to navigate to all of the other REST service URLs by following links from a Service
Provider Catalog.

Basic application architecture
On the OSLC4J Bugzilla application, all REST services are handled by a Bugzilla
Application JAX-RS servlet, which is mapped to the URL pattern /services/* in
OSLC4JBugzilla/src/main/webapp/WEB-INF/web.xml:

<servlet>
 <servlet-name>JAX-RS Servlet</servlet-name>
 <servlet-
class>org.apache.wink.server.internal.servlet.RestServlet</
servlet-class>
 <init-param>
 <param-name>javax.ws.rs.Application</param-name>
 <param-
value>org.eclipse.lyo.oslc4j.bugzilla.services.BugzillaApplicati
on</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
 <servlet-name>JAX-RS Servlet</servlet-name>
 <url-pattern>/services/*</url-pattern>
</servlet-mapping>

http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://HOST/OSLC4JBugzilla/services/resourceShapes/changeRequest
http://HOST/OSLC4JBugzilla/services/resourceShapes/changeRequest
http://open-services.rtp.raleigh.ibm.com/resources/tutorials/oslc-primer/resourceshapes/
http://open-services.rtp.raleigh.ibm.com/resources/tutorials/oslc-primer/resourceshapes/
http://web.xml
http://web.xml

Providing a Service Provider Catalog
In our adapter, we use a simple pattern to implement OSLC REST services: for each
operation, a JAX-RS method will accept incoming requests, load the data necessary to
render a response, perform the requested operation, and then render the resulting RDF
or other representations.

The Service Provider Catalog is defined in ServiceProviderCatalogService (in the
org.eclipse.lyo.oslc4j.bugzilla.servicespackage). The catalog is available at the URL
http://HOST/OSLC4JBugzilla/services/catalog/singleton and will list the
OSLC Service Providers (one per Bugzilla product).

Defining a JAX-RS method for the Service Provider Catalog

In the file ServiceProviderCatalogService.java (in the
org.eclipse.lyo.oslc4j.bugzilla .servlet package), view the JAX-RS annotation which
defines the class that will run at http://HOST/OSLC4JBugzilla/services/
catalog/:

@Path("catalog")
public class ServiceProviderCatalogService
{
 [ServiceProviderCatalog code]
}

That class has a variety of methods that will return a Service Provider Catalog in a
variety of formats. More on those later on.

Retrieving Bugzilla product IDs

To build our catalog, we register the Bugzilla product IDs with the
ServiceProviderCatalogSingleton class (in
theorg.eclipse.lyo.oslc4j.bugzilla.servlet package). The major activity happens in the
initServiceProvidersFromProducts()method.

First, we create a connection to Bugzilla:

BugzillaConnector bc =
BugzillaManager.getBugzillaConnector(httpServletRequest);

If there’s a valid connection, we fetch a list of Bugzilla products:

http://HOST/OSLC4JBugzilla/services/catalog/singleton
http://HOST/OSLC4JBugzilla/services/catalog/singleton
http://HOST/OSLC4JBugzilla/services/catalog/
http://HOST/OSLC4JBugzilla/services/catalog/
http://HOST/OSLC4JBugzilla/services/catalog/
http://HOST/OSLC4JBugzilla/services/catalog/

GetAccessibleProducts getProductIds = new
GetAccessibleProducts();
bc.executeMethod(getProductIds);
Integer[] productIds = getProductIds.getIds();

String basePath = BugzillaManager.getBugzServiceBase();

Then for each Bugzilla product, we register an OSLC Service Provider:

for (Integer p : productIds) {
 String productId = Integer.toString(p);

 if (! serviceProviders.containsKey(productId)) {

 GetProduct getProductMethod = new GetProduct(p);
 bc.executeMethod(getProductMethod);
 String product =
getProductMethod.getProduct().getName();

 Map<String, Object> parameterMap = new HashMap<String,
Object>();
 parameterMap.put("productId",productId);
 final ServiceProvider bugzillaServiceProvider =
BugzillaServiceProviderFactory.createServiceProvider(basePath,
product, parameterMap);

registerServiceProvider(basePath,bugzillaServiceProvider,product
Id);
 }
}

(Of particular note is the parameterMap HashMap, which will be used to add the
Bugzilla productId to the URLs of our services in the BugzillaChangeRequestService
class. More on that later.)

Displaying the Service Provider Catalog as HTML

Back in the file ServiceProviderCatalogService.java (in the
org.eclipse.lyo.oslc4j.bugzilla.services package), view the
getHtmlServiceProvider() method, which forwards the catalog object to a JSP
template to produce the HTML:

if (catalog !=null)
{
 httpServletRequest.setAttribute("bugzillaUri",
BugzillaManager.getBugzillaUri());
 httpServletRequest.setAttribute("catalog",catalog);

 RequestDispatcher rd =
httpServletRequest.getRequestDispatcher("/cm/
serviceprovidercatalog_html.jsp");
 try {
 rd.forward(httpServletRequest, httpServletResponse);
 } catch (Exception e) {
 e.printStackTrace();
 throw new WebApplicationException(e);
 }
}

Next, view the file src/main/webapp/cm/serviceprovidercatalog_html.jsp,
which is the JSP template for displaying the catalog in HTML. It’s a pretty typical HTML
page and it reuses stylesheets from the Bugzilla application.

Of particular note are the dynamic segments. First, near the top of the file, the catalog
variable is set from the passed catalog attribute:

String bugzillaUri = (String)
request.getAttribute("bugzillaUri");
ServiceProviderCatalog catalog =
(ServiceProviderCatalog)request.getAttribute("catalog");

And near the bottom of the file, we loop through the service providers in the catalog and
output a heading with the name of the product (getTitle()) and a link (getAbout()):

<% for (ServiceProvider s : catalog.getServiceProviders()) { %>
<h3>Service Provider for Product <%= s.getTitle() %></h3>
<p><a href="<%= s.getAbout() %>">
 <%= s.getAbout() %></p>
<% } %>

If you’re running the example applications, you can see this in action at http://localhost:
8080/OSLC4JBugzilla/services/catalog/singleton.

http://localhost:8080/OSLC4JBugzilla/services/catalog/singleton
http://localhost:8080/OSLC4JBugzilla/services/catalog/singleton
http://localhost:8080/OSLC4JBugzilla/services/catalog/singleton
http://localhost:8080/OSLC4JBugzilla/services/catalog/singleton

Screen capture of the Service Provider Catalog in a web browser

Retrieving and displaying details about a Service
Provider
Next, we’ll display the details for each product as an OSLC Service Provider in an
HTML page.

Similar to the Service Provider Catalog, the ServiceProviderService class in the
org.eclipse.lyo.oslc4j.bugzilla.servicespackage defines the URL structure:

@Path("serviceProviders")
public class ServiceProviderService
{
 [ServiceProviderClass code]

}

The class ServiceProviderService has several methods that fetch the appropriate data
and present it in a variety of formats. For the moment, we’ll explore the
getHtmlServiceProvider() method:

@GET
@Path("{serviceProviderId}")
@Produces(MediaType.TEXT_HTML)
public void
getHtmlServiceProvider(@PathParam("serviceProviderId") final
String serviceProviderId)
{
 ServiceProvider serviceProvider =
ServiceProviderCatalogSingleton.getServiceProvider(httpServletRe
quest, serviceProviderId);

 Service [] services = serviceProvider.getServices();

 if (services !=null && services.length > 0)
 {
 //Bugzilla adapter should only have one Service per
ServiceProvider
 httpServletRequest.setAttribute("bugzillaUri",
BugzillaManager.getBugzillaUri());
 httpServletRequest.setAttribute("service", services[0]);
 httpServletRequest.setAttribute("serviceProvider",
serviceProvider);

 RequestDispatcher rd =
httpServletRequest.getRequestDispatcher("/cm/
serviceprovider_html.jsp");
 try {
 rd.forward(httpServletRequest, httpServletResponse);
 } catch (Exception e) {
 e.printStackTrace();
 throw new WebApplicationException(e);
 }
 }
}

Like the Service Provider Catalog class, we retrieve information from Bugzilla; however,
here we only retrieve information about a single Product (from the URL /
serviceProviders/{ProductId}). We then dispatch serviceprovider_html.jsp to
display information about it in HTML.

Displaying the Service Provider as HTML

In src/main/webapp/cm/serviceprovider_html.jsp, view near the top of the
file where we assemble all the URLs for OSLC services (which we’ll cover later) such as
query capability, delegated dialogs, and resource shapes:

<%
String bugzillaUri = (String)
request.getAttribute("bugzillaUri");
Service service = (Service)request.getAttribute("service");
ServiceProvider serviceProvider =
(ServiceProvider)request.getAttribute("serviceProvider");

//OSLC Dialogs
Dialog [] selectionDialogs = service.getSelectionDialogs();
String selectionDialog =
selectionDialogs[0].getDialog().toString();
Dialog [] creationDialogs = service.getCreationDialogs();
String creationDialog =
creationDialogs[0].getDialog().toString();

//OSLC CreationFactory and shape
CreationFactory [] creationFactories =
service.getCreationFactories();
String creationFactory =
creationFactories[0].getCreation().toString();
URI[] creationShapes = creationFactories[0].getResourceShapes();
String creationShape = creationShapes[0].toString();

//OSLC QueryCapability and shape
QueryCapability [] queryCapabilities=
service.getQueryCapabilities();
String queryCapability =
queryCapabilities[0].getQueryBase().toString();
String queryShape =
queryCapabilities[0].getResourceShape().toString();

%>

And towards the bottom, you’ll find the HTML where we display those URLs:

<h2>OSLC-CM Resource Selector Dialog</h2>
<p><a href="<%= selectionDialog %>">
 <%= selectionDialog %></p>

<h2>OSLC-CM Resource Creator Dialog</h2>
<p><a href="<%= creationDialog %>">
 <%= creationDialog %></p>

<h2>OSLC-CM Resource Creation Factory and Resource Shape</h2>
<p><a href="<%= creationFactory %>">
 <%= creationFactory %></p>
<p><a href="<%= creationShape %>">
 <%= creationShape %></p>

<h2>OSLC-CM Resource Query Capability and Resource Shape</h2>
<p><a href="<%= queryCapability %>">
 <%= queryCapability %></p>
<p><a href="<%= queryShape %>">
 <%= queryShape %></p>

Browsing the Service Provider Catalog and Service Providers

If you’re running the example applications, browse to http://localhost:8080/
OSLC4JBugzilla/services/catalog/singleton.

Click on the link for any Service Provider (the number of Service Providers you’ll see
depends on the number of available Products on your Bugzilla server). You should see
an HTML page with links to the available REST services, similar to this:

http://localhost:8080/OSLC4JBugzilla/services/catalog/singleton
http://localhost:8080/OSLC4JBugzilla/services/catalog/singleton
http://localhost:8080/OSLC4JBugzilla/services/catalog/singleton
http://localhost:8080/OSLC4JBugzilla/services/catalog/singleton

Providing RDF+XML or JSON representations of
Service Providers and Service Provider Catalogs
Although the HTML representations we created above are useful as an educational and
debugging tool, to connect to another tool (and comply with the specification!) we’ll need
to also create machine-readable formats, specifically RDF+XML and JSON.

Providing RDF+XML or JSON representations manually

One way you could create RDF+XML or JSON representations of these OSLC
resources would be nearly the same as the HTML representation: build and gather the
data for the resource and dispatch a JSP template to output it in the proper format.

Your JSP template for RDF+XML for the ServiceProvider might look similar to this:

<?xml version="1.0" encoding="UTF-8"?>
<%@ page contentType="application/rdf+xml" language="java"%>
<%@ page import="java.net.URI" %>
<%@ page import="jbugz.base.Product" %>
<%
// Load up the data sent in with the JSP template
String bugzillaUri = (String)
request.getAttribute("bugzillaUri");
Service service = (Service)request.getAttribute("service");
ServiceProvider serviceProvider =
(ServiceProvider)request.getAttribute("serviceProvider");

// Build the OSLC dialogs here
// ...

%>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dcterms="http://purl.org/dc/terms/"
 xmlns:oslc="http://open-services.net/ns/core#">

<oslc:ServiceProvider
 rdf:about="<%= serviceProvider.getAbout() %>">
<dcterms:title>OSLC-CM Adapter/Bugzilla Service Provider:
Product <%= serviceProvider.getTitle() + "(" +
serviceProvider.getIdentifier() + ")" %></dcterms:title>
<dcterms:description>
Enables navigation to OSLC-CM Resource Creator and Selector
Dialogs
</dcterms:description>

<oslc:service>
 <oslc:Service>
 <oslc:domain rdf:resource="http://open-services.net/ns/
cm#" />
 <!-- URLs to your OSLC services (dialogs, etc.) will go
here -->
 </oslc:Service>
</oslc:service>

</oslc:ServiceProvider>
</rdf:RDF>

Although using another JSP template gives you complete control over the output, you
have a higher risk of creating improperly formatted output. There are other options:

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://purl.org/dc/terms/
http://purl.org/dc/terms/
http://open-services.net/ns/core#
http://open-services.net/ns/core#
http://open-services.net/ns/cm#
http://open-services.net/ns/cm#
http://open-services.net/ns/cm#
http://open-services.net/ns/cm#

• Use an RDF API: build an RDF graph of triples and then serialize it into RDF+XML.
This ensures proper formatting, but it’s another API to work with.

• Use an XML DOM API: build up a DOM and then serialize it to XML.

Use whatever you’re most comfortable with. However, with Eclipse Lyo there’s an easier
way.

Providing RDF+XML or JSON representations with OSLC4J

Open the ServiceProviderService.java class in the
org.eclipse.lyo.oslc4j.bugzilla.services package and check out thegetServiceProvider
method:

@GET
@Path("{serviceProviderId}")
@Produces({OslcMediaType.APPLICATION_RDF_XML,
OslcMediaType.APPLICATION_XML, OslcMediaType.APPLICATION_JSON})
public ServiceProvider
getServiceProvider(@PathParam("serviceProviderId") final String
serviceProviderId)
{
 httpServletResponse.addHeader("Oslc-Core-Version","2.0");
 return
ServiceProviderCatalogSingleton.getServiceProvider(httpServletRe
quest, serviceProviderId);
}

That’s it for outputting Service Providers in a XML, RDF+XML, and JSON! You’ll find
similar code for the Service Provider Catalog in the
ServiceProviderCatalogService.java file.

What’s happening is the OSLC4J toolkit includes JAX-RS message body writers that
serialize the Java representation of the Service Provider (or any OSLC resource) to
RDF+XML, JSON, or XML. Likewise, it can convert OSLC resources in any of those
formats back into Java objects. We’ll explore this more in the next topic.

VIEWING THE MACHINE-READABLE FORMATS OF A SERVICE PROVIDER
CATALOG

Let’s try it out!

1. In Firefox or Chrome, open the Poster plugin. Poster is a browser plugin (for Firefox
and Chrome) which can be used to send HTTP REST requests with full control over
HTTP headers and their values.

2. For the URL field, type the URL for the Service Provider Catalog:
http://localhost:8080/OSLC4JBugzilla/services/catalog/singleton

3. For the User Auth fields, type your Bugzilla username and password.

https://addons.mozilla.org/en-us/firefox/addon/poster/
https://addons.mozilla.org/en-us/firefox/addon/poster/
https://chrome.google.com/webstore/detail/chrome-poster/cdjfedloinmbppobahmonnjigpmlajcd
https://chrome.google.com/webstore/detail/chrome-poster/cdjfedloinmbppobahmonnjigpmlajcd
http://localhost:8080/OSLC4JBugzilla/services/catalog/singleton
http://localhost:8080/OSLC4JBugzilla/services/catalog/singleton

4. On the Headers tab, for the Name type Accept and for the Value type any of the
following:

5. application/rdf+xml
6. application/json
7. application/xml
8. Then, click Add/Change to add the Accept header.
9. Click Get to execute the HTTP GET method. You should receive the complete

Service Provider Catalog in the format you requested via Accept header. OSLC4J
and JAX-RS produce the correct serialization based on the Accept header.

Next, try it with the URL for one of the Service Providers. (The exact URL will depend on
the Product ID of the products on your Bugzilla server.)

Now, a client can start with a single URL (for the catalog) and navigate to all of the
Service Providers. A client could use this to show a list of Products to a user and allow
them to pick which ones to report bugs against, or query for existing bugs.

Providing OSLC representations of
Bugzilla bugs
In the previous section we noted that we used OSLC4J to transform Plain Old Java
Object (POJO) representations of OSLC resources into RDF, XML, and JSON formats.
In this section, we’ll look more closely at how OSLC4J defines OSLC resources. Then
we’ll make Bugzilla Bugs available as OSLC Change Management resources in a
variety of formats.

What is OSLC4J?
OSLC4J, part of the Eclipse Lyo project, is a Java SDK for developing OSLC provider or
consumer implementations. OSLC resources can be modeled with plain old Java
objects (POJOs) which are annotated to provide the information OSLC4J needs to
create resource shapes, service provider documents, and to serialize/de-serialize OSLC
resources from Java to representations such as RDF or JSON.

Defining OSLC resources with OSLC4J
OSLC4J comes with a sample Change Management application that includes the
OSLC4J-annotated Java class representing a Change Request (as defined in the OSLC
Change Management v2 specification).

The OSLC4J Bugzilla adapter includes that class (ChangeRequest) and extends it with
Bugzilla-specific attributes (for example, “Product”, “Platform”, or other attributes that
are not part of the OSLC CM specification); this extended change request is called a
BugzillaChangeRequest.

Exploring the OSLC4J ChangeRequest class

Open the file ChangeRequest.java in the org.eclipse.lyo.oslc4j.bugzilla.resources
package and explore the variables and methods. For reference, here is the definition of
a Change Request in the OSLC Change Management specification.

First, observe the private variables at the top of the ChangeRequest class. These are
the attributes of an OSLC CM V2.0 Change Request. Here are first several, which
represent the relationships between Change Requests and other OSLC artifacts:

http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-service-providers-and-catalogs/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-service-providers-and-catalogs/
http://eclipse.org/lyo/
http://eclipse.org/lyo/
http://open-services.net/bin/view/Main/CmSpecificationV2#Resource_ChangeRequest
http://open-services.net/bin/view/Main/CmSpecificationV2#Resource_ChangeRequest
http://open-services.net/bin/view/Main/CmSpecificationV2#Resource_ChangeRequest
http://open-services.net/bin/view/Main/CmSpecificationV2#Resource_ChangeRequest

private final Set<Link> affectedByDefects = new
HashSet<Link>();
private final Set<Link> affectsPlanItems = new
HashSet<Link>();
private final Set<Link> affectsRequirements = new
HashSet<Link>();
private final Set<Link> affectsTestResults = new
HashSet<Link>();
private final Set<Link> blocksTestExecutionRecords = new
HashSet<Link>();

Further down are the primitive attributes of a Change Request:

private Boolean approved;
private Boolean closed;
private Date closeDate;
private Date created;
private String description;

Further down, each attribute has an associated getter method. For example, here’s the
getIdentifier() method:

@OslcDescription("A unique identifier for a resource. Assigned
by the service provider when a resource is created. Not intended
for end-user display.")
@OslcOccurs(Occurs.ExactlyOne)
@OslcPropertyDefinition(OslcConstants.DCTERMS_NAMESPACE +
"identifier")
@OslcReadOnly
@OslcTitle("Identifier")
public String getIdentifier()
{
 return identifier;
}

Note the OSLC-specific annotations before the method. These are used to not only
automatically create OSLC resource shape documents, service provider documents,
and service provider catalogs, but also assist with the serialization of Java objects to
RDF or JSON:

• @OslcOccurs provides the cardinality of the attribute.
• @OslcPropertyDefinition providers the namespace qualified attribute name
• @OslcReadOnly indicates this attribute should appear in the resource shape as read

only

Because the default type in OSLC4J is a string, there is no type annotation. Look for
other attributes with the @OslcValueType annotation for examples of attributes that
are not strings.

Extending ChangeRequest with Bugzilla attributes

Open the file BugzillaChangeRequest.java in the
org.eclipse.lyo.oslc4j.bugzilla.resources package and explore the variables and
methods for the Bugzilla-specific attributes.

As with the ChangeRequest class, the various getter methods (for example,
getVersion()) have OSLC annotations.

MAPPING BUGZILLA ATTRIBUTES TO OSLC-CM PROPERTIES

To represent a Bugzilla bug as an RDF/XML document for an OSLC Change
Management resource, we must map Bugzilla bug attributes to OSLC-CM
ChangeRequest properties. The following attributes line up fairly clearly:

Bugzilla bug field Maps to RDF Predicate Prefixed name*

id http://purl.org/dc/terms/
identifier

dcterms:identifier

summary http://purl.org/dc/terms/title dcterms:title

status http://open-services.net/ns/
cm#status

oslc_cm:status

assigned_to http://purl.org/dc/terms/
contributor

dcterms:contributor

creation_time http://purl.org/dc/terms/
created

dcterms:created

last_change_time http://purl.org/dc/terms/
modified

dcterms:modified

(* Prefix may be different depending on namespace prefix declaration in the XML)

In the BugzillaChangeRequest class, the fromBug() method sets these properties.
Near the top of the method, here is the code that sets the properties
dcterms:identifier, dcterms:title, and oslc_cm:status properties from
(respectively) the ID, Summary, and Status of the Bugzilla bug:

http://purl.org/dc/terms/identifier
http://purl.org/dc/terms/identifier
http://purl.org/dc/terms/identifier
http://purl.org/dc/terms/identifier
http://purl.org/dc/terms/title
http://purl.org/dc/terms/title
http://open-services.net/ns/cm#status
http://open-services.net/ns/cm#status
http://open-services.net/ns/cm#status
http://open-services.net/ns/cm#status
http://purl.org/dc/terms/contributor
http://purl.org/dc/terms/contributor
http://purl.org/dc/terms/contributor
http://purl.org/dc/terms/contributor
http://purl.org/dc/terms/created
http://purl.org/dc/terms/created
http://purl.org/dc/terms/created
http://purl.org/dc/terms/created
http://purl.org/dc/terms/modified
http://purl.org/dc/terms/modified
http://purl.org/dc/terms/modified
http://purl.org/dc/terms/modified
http://open-services.net/bin/view/Main/CmSpecificationV2#Resource_ChangeRequest
http://open-services.net/bin/view/Main/CmSpecificationV2#Resource_ChangeRequest
http://open-services.net/bin/view/Main/CmSpecificationV2#Resource_ChangeRequest
http://open-services.net/bin/view/Main/CmSpecificationV2#Resource_ChangeRequest

BugzillaChangeRequest changeRequest = new
BugzillaChangeRequest();
changeRequest.setIdentifier(bug.getID());
changeRequest.setTitle(bug.getSummary());
changeRequest.setStatus(bug.getStatus());

Bugzilla bugs also have attributes that do not map to any OSLC Change Management
properties but that are required for Bugzilla. We should make these available in our
RDF/XML representations by using the RDF predicates that Bugzilla defines for Bug
lists, and we’ll use the unique namespace bugz as a prefix (defined in
Constants.java as shorthand forhttp://www.bugzilla.org/rdf#):

Bugzilla bug field Maps to RDF Predicate Prefixed name*

product http://www.bugzilla.org/
rdf#product

bugz:product

component http://www.bugzilla.org/
rdf#component

bugz:component

version http://www.bugzilla.org/
rdf#version

bugz:version

priority http://www.bugzilla.org/
rdf#priority

bugz:priority

platform http://www.bugzilla.org/
rdf#platform

bugz:platform

op_sys http://www.bugzilla.org/
rdf#op_sys

bugz:operatingSystem

(* Prefix may be different depending on namespace prefix declaration in the XML)

We set these properties in the fromBug() method in the BugzillaChangeRequest
class. Here’s the code that sets bugz:product and bugz:component:

changeRequest.setProduct(bug.getProduct());
changeRequest.setComponent(bug.getComponent());

You can explore the fromBug() method to see how the other properties are set.

Providing OSLC representations of Bugzilla bugs
Like with the ServiceProviderService and ServiceProviderCatalogService
(discussed in in more detail in the previous section), the
BugzillaChangeRequestService class has many JAX-RS methods to handle both

http://www.bugzilla.org/rdf#product
http://www.bugzilla.org/rdf#product
http://www.bugzilla.org/rdf#product
http://www.bugzilla.org/rdf#product
http://www.bugzilla.org/rdf#component
http://www.bugzilla.org/rdf#component
http://www.bugzilla.org/rdf#component
http://www.bugzilla.org/rdf#component
http://www.bugzilla.org/rdf#version
http://www.bugzilla.org/rdf#version
http://www.bugzilla.org/rdf#version
http://www.bugzilla.org/rdf#version
http://www.bugzilla.org/rdf#priority
http://www.bugzilla.org/rdf#priority
http://www.bugzilla.org/rdf#priority
http://www.bugzilla.org/rdf#priority
http://www.bugzilla.org/rdf#platform
http://www.bugzilla.org/rdf#platform
http://www.bugzilla.org/rdf#platform
http://www.bugzilla.org/rdf#platform
http://www.bugzilla.org/rdf#op_sys
http://www.bugzilla.org/rdf#op_sys
http://www.bugzilla.org/rdf#op_sys
http://www.bugzilla.org/rdf#op_sys
http://www.bugzilla.org/docs/2.18/html/faq.html#faq-phb-data
http://www.bugzilla.org/docs/2.18/html/faq.html#faq-phb-data
http://www.bugzilla.org/docs/2.18/html/faq.html#faq-phb-data
http://www.bugzilla.org/docs/2.18/html/faq.html#faq-phb-data
http://www.bugzilla.org/rdf#
http://www.bugzilla.org/rdf#
http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-service-providers-and-catalogs/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-service-providers-and-catalogs/

collections of BugzillaChangeRequests and individual BugzillaChangeRequests with a a
variety of HTTP requests and output formats.

Open BugzillaChangeRequestService.java in the
org.eclipse.lyo.oslc4j.bugzilla.services package.

Note the @Path annotation near the top of the class:

@Path("{productId}/changeRequests")

Recall that in ServiceProviderCatalogSingleton.java we registered a Service
Provider for every Bugzilla product and used the product ID of the product in the URL
for the Service Provider. So if the ID of a Bugzilla product is 2, our base URL for the
BugzillaChangeRequestService methods will be:

http://hostname:8080/OSLC4JBugzilla/services/2/changeRequests

Providing representations of Bugzilla Bugs as RDF+XML or JSON

As with Service Providers and the Service Provider Catalog, with OSLC4J we do not
have to write manually code the RDF or JSON representation of a bug; the message
body writers in OSLC4J automatically serialize the Java object into the appropriate
machine-readable format.

The output is handled by the following methods in the BugzillaChangeRequestService
class:

• getChangeRequests(): RDF/XML, XML and JSON representation of a change
request collection

• getChangeRequest(): RDF/XML, XML, and JSON representation of a single
change request

Without OSLC4J you could dispatch a JSP template, use an RDF API, or use an XML
DOM API to generate the appropriate output format.

VIEWING THE RDF+XML OR JSON REPRESENTATION OF A COLLECTION OF
BUGZILLA BUGS

The following assumes the Bugzilla adapter is running at localhost:8080/
OSLC4JBugzilla

In Firefox or Chrome, open the Poster plugin.

For the URL field, type the URL for a list of all the bugs for a product:

http://localhost:8080/OSLC4JBugzilla/services/{productId}/
changeRequests

http://hostname:8080/OSLC4JBugzilla/services/2/changeRequests
http://hostname:8080/OSLC4JBugzilla/services/2/changeRequests
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/

For example, with a product ID of 1:

http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests

For the User Auth fields, type your Bugzilla username and password.

On the Headers tab, for the Name type Accept and for the Value type any of the
following:

• application/rdf+xml
• application/json
• application/xml

Then, click Add/Change to add the Accept header.

Click Get to execute the HTTP GET method and you should receive the collection of
bugs in the format you requested viaAccept header. OSLC4J and JAX-RS produce the
correct serialization based on the Accept header.

VIEWING THE RDF+XML OR JSON REPRESENTATION OF A BUGZILLA BUG

Follow the procedure above for a collection of bugs, but for the URL field, type the URL
for a single bug:

http://localhost:8080/OSLC4JBugzilla/services/{productId}/
changeRequests/{bugId}

For example, with a Product ID of 1 and a Bug ID of 10:

http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/
10

Click Get and you should receive the bug in the format you requested via Accept
header.

Displaying a collection of Bugzilla bugs as HTML

OSLC4J can simplify providing collections of bugs in machine-readable formats, but we
should also provide a more human-friendly HTML listing of Bugzilla bugs.

In BugzillaChangeRequestService.java in the
org.eclipse.lyo.oslc4j.bugzilla.services package find the getHtmlCollection()
method.

http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/10
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/10
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/10
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/10

@GET
@Produces({ MediaType.TEXT_HTML })
public Response getHtmlCollection(@PathParam("productId") final
String productId, […]) throws ServletException, IOException
{
 /* [code for returning a list of bugs with HTML] */
}

This method’s basic activity is to retrieve a list of bugs for a Bugzilla product…

final List<BugzillaChangeRequest> results =
 BugzillaManager.getBugsByProduct(
 httpServletRequest,
 productId,
 page,
 limit,
 where,
 prefixMap,
 propMap,
 orderBy,
 searchTerms);

… and dispatch that list to a template (/cm/
changerequest_collection_html.jsp):

httpServletRequest.setAttribute("results", results);

/**
 * …
 */

RequestDispatcher rd = httpServletRequest.getRequestDispatcher(
"/cm/changerequest_collection_html.jsp"
);
rd.forward(httpServletRequest,httpServletResponse);

There are multiple parameters for this function that allow you to filter the collection with
queries, paginate the results, and change the sort order. The Bugzilla Adapter does not
use all of these parameters; however they are necessary for full support of OSLC
Queries.

Open the file /src/webapp/cm/changerequest_collection_html.jsp in
OSLC4JBugzilla. The HTML layout is nearly identical to that of the Service Providers
and Catalog.

Towards the top, you’ll see that we receive the data:

http://open-services.net/bin/view/Main/OSLCCoreSpecQuery
http://open-services.net/bin/view/Main/OSLCCoreSpecQuery
http://open-services.net/bin/view/Main/OSLCCoreSpecQuery
http://open-services.net/bin/view/Main/OSLCCoreSpecQuery

<%
 List<BugzillaChangeRequest> changeRequests =
(List<BugzillaChangeRequest>) request.getAttribute("results");
 ServiceProvider serviceProvider = (ServiceProvider)
request.getAttribute("serviceProvider");
 String bugzillaUri = (String)
request.getAttribute("bugzillaUri");
 String queryUri = (String)request.getAttribute("queryUri");
 String nextPageUri =
(String)request.getAttribute("nextPageUri");
%>

And towards the bottom of the file, we loop through the list of bugs and output the title/
summary and a link as HTML:

<h1>Query Results</h1>

<% for (BugzillaChangeRequest changeRequest : changeRequests)
{ %>
<p>Summary: <%= changeRequest.getTitle() %>
<a href="<%=
changeRequest.getAbout() %>">
 <%= changeRequest.getAbout() %></p>
<% } %>

BROWSING ALL THE BUGS FOR A BUGZILLA PRODUCT

Let’s try it out! From the Service Provider Catalog, you can navigate to a list of all bugs
for a product.

1. If you’re running the example applications, browse tohttp://localhost:8080/
OSLC4JBugzilla/services/catalog/singleton.

2. Click on the link for any Service Provider for a product (for example, if the product ID
is “1”:http://localhost:8080/OSLC4JBugzilla/services/serviceProviders/1.

3. Then click on the first link under the OSLC-CM Resource Query Capability and
Resource Shape heading. For example, if the product ID is “1”: http://localhost:
8080/OSLC4JBugzilla/services/1/changeRequests

http://localhost:8080/OSLC4JBugzilla/services/catalog/singleton
http://localhost:8080/OSLC4JBugzilla/services/catalog/singleton
http://localhost:8080/OSLC4JBugzilla/services/catalog/singleton
http://localhost:8080/OSLC4JBugzilla/services/catalog/singleton
http://localhost:8080/OSLC4JBugzilla/services/serviceProviders/1
http://localhost:8080/OSLC4JBugzilla/services/serviceProviders/1
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests

You should see a page with links to the bugs, similar to this:

An HTML page in a browser showing a list of Bugzilla bugs

Forwarding HTML requests for single Bugzilla bugs

The Bugzilla application itself can create an HTML page with all the details about a bug
– that’s one of its primary features – so why recreate the wheel?

In the BugzillaChangeRequestService class, note the getHtmlChangeRequest()
method:

@GET
@Path("{changeRequestId}")
@Produces({ MediaType.TEXT_HTML })
public Response getHtmlChangeRequest(@PathParam("productId")
final String productId,
 @PathParam("changeRequestId")
final String changeRequestId) throws ServletException,
IOException, URISyntaxException
{
 String forwardUri = BugzillaManager.getBugzillaUri() +
"show_bug.cgi?id=" + changeRequestId;
 httpServletResponse.sendRedirect(forwardUri);
 return Response.seeOther(new URI(forwardUri)).build();
}

Simple enough: given the ID number ({changeRequestId}) for a particular bug, the
OSLC Bugzilla adapter will forward you directly to the web page for the bug in Bugzilla
(show_bug.cgi?id={changeRequestId}). For example, a request from the adapter
for bug 531 in Product 1 at the following URL…

http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/
531

… will forward you to the Bugzilla page for the bug at this URL:

https://bugzilla-host.example.com/show_bug.cgi?id=531

That’s useful on its own, but OSLC also specifies a method called UI Preview for
showing preview information about a resource in another tool. We’ll tackle these rich
preview formats in the next section.

Providing UI Previews
Once you establish relationships between resources using links, you can enable a very
useful form of integration known as UI Preview. When a user is viewing a resource in a
web browser, they might see a list of links to related resources that are in another
application. UI Preview makes it easy for them to learn about those resources in context
and without leaving the web page that they are looking at. When users “hover” over a
link with their mouse or focus on it, they can see a brief preview of that resource in a
tool-tip or a pop-up window.

For all the details, see the OSLC UI Preview specification. (Don’t worry; this one is
pretty short.)

In this section, we’ll explore how to make our Bugzilla Adapter into a provider of UI
Previews. When a user sees a link to Change Requests, they can see a UI Preview as
long as the application that is displaying that link is a UI Preview Consumer. Later in this
tutorial, you’ll be able to see your UI Preview in the NinaCRM application, because
NinaCRM will support UI Preview as a Consumer.

Add UI Preview handling to the
BugzillaChangeRequestService class
In the previous section we explored how the BugzillaChangeRequestService class
handles requests for collections ofBugzillaChangeRequests or individual
BugzillaChangeRequests.

http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/531
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/531
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/531
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/531
https://bugzilla-host.example.com/show_bug.cgi?id=531
https://bugzilla-host.example.com/show_bug.cgi?id=531
http://open-services.net/bin/view/Main/OslcCoreUiPreview
http://open-services.net/bin/view/Main/OslcCoreUiPreview
http://open-services.net/resources/tutorials/oslc-primer/ui-preview/
http://open-services.net/resources/tutorials/oslc-primer/ui-preview/
http://open-services.net/bin/view/Main/OslcCoreUiPreview
http://open-services.net/bin/view/Main/OslcCoreUiPreview
http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-oslc-representations/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-oslc-representations/

To add UI Preview support, we will add two methods to the service:

1. Provide an OSLC Compact Representation of a BugzillaChangeRequest.
2. Provide what is known as a small HTML preview of a BugzillaChangeRequest.

Provide the compact XML representation of a Bugzilla bug

Open the file BugzillaChangeRequestService.java in the
org.eclipse.lyo.oslc4j.bugzilla.servcies package and find the getCompact() method.

Note the @Produces annotation:

@Produces({OslcMediaType.APPLICATION_X_OSLC_COMPACT_XML})

As with other media types, OSLC4J will handle serialization to the correct media types.

The method first fetches the bug and converts it to a BugzillaChangeRequest:

final Bug bug = BugzillaManager.getBugById(httpServletRequest,
changeRequestId);

Then, it copies the “About” and “Title” attributes:

compact.setAbout(getAboutURI(productId + "/changeRequests/" +
changeRequest.getIdentifier()));
compact.setTitle(changeRequest.getTitle());

Then to help identify the source of the bug, we add the Bugzilla icon (from the server) to
our compact representation:

String iconUri = BugzillaManager.getBugzillaUri() + "/images/
favicon.ico";
compact.setIcon(new URI(iconUri));

Now we’ll build two Preview objects, smallPreview and largePreview, and pointers
to the smallPreview() and largePreview() services in
BugzillaChangeRequestService:

//Create and set attributes for OSLC preview resource
final Preview smallPreview = new Preview();
smallPreview.setHintHeight("11em");
smallPreview.setHintWidth("45em");
smallPreview.setDocument(new URI(compact.getAbout().toString() +
"/smallPreview"));
compact.setSmallPreview(smallPreview);

//Use the HTML representation of a change request as the large
preview as well

final Preview largePreview = new Preview();
largePreview.setHintHeight("20em");
largePreview.setHintWidth("45em");
largePreview.setDocument(new URI(compact.getAbout().toString() +
"/largePreview"));
compact.setLargePreview(largePreview);

And finally return the compact XML:

return compact;

As with many other methods, we needed to create the Compact and Preview objects
and then let OSLC4J take care of serializing them to RDF.

VIEWING THE COMPACT XML REPRESENTATION OF A BUG.

The following assumes the Bugzilla adapter is running at localhost:8080/
OSLC4JBugzilla

In Firefox or Chrome, open the Poster plugin.

For the URL field, type the URL for a single bug:

http://localhost:8080/OSLC4JBugzilla/services/{productId}/
changeRequests/{bugId}

For example, with a product ID of 1 and a bug ID of 10:

http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/
10

For the User Auth fields, type your Bugzilla username and password.

On the Headers tab, for the Name type Accept and for the Value type the following:

application/x-oslc-compact+xml

Then, click Add/Change to add the Accept header.

Click Get to execute the HTTP GET method and you should receive OSLC compact
XML representation of the bug. Examine the output to see how the
oslc:smallPreview and oslc:largePreview resources are defined in the
oslc:Compact resource.

If a consumer application wants to display a small or large preview of a
BugzillaChangeRequest, the application can find the URLs to them using this x-
oslc-compact+xml representation.

http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/10
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/10
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/10
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/10

Now, let’s set up the HTML for these previews.

Creating a method and JSP template for UI Previews

In the last section, the getCompact() method in the BugzillaChangeRequestService
created preview resources pointing to changeRequests/{id}/smallPreview and
changeRequests/{id}/largePreview.

Open the file BugzillaChangeRequestService.java in the
org.eclipse.lyo.oslc4j.bugzilla.servcies package and find the smallPreview()
method:

@GET
@Path("{changeRequestId}/smallPreview")
@Produces({ MediaType.TEXT_HTML })
public void smallPreview(@PathParam("productId") final
String productId,
 @PathParam("changeRequestId") final
String changeRequestId) throws ServletException, IOException,
URISyntaxException
{
 // Method code here
}

The smallPreview() method first fetches the bug and converts it to a
BugzillaChangeRequest:

final Bug bug = BugzillaManager.getBugById(httpServletRequest,
changeRequestId);

Then, it sets some attributes and dispatches a JSP:

BugzillaChangeRequest changeRequest =
BugzillaChangeRequest.fromBug(bug);

changeRequest.setServiceProvider(
 ServiceProviderCatalogSingleton.getServiceProvider(
 httpServletRequest,
 productId).getAbout());
changeRequest.setAbout(getAboutURI(productId + "/
changeRequests/" + changeRequest.getIdentifier()));

final String bugzillaUri =
BugzillaManager.getBugzillaUri().toString();
httpServletRequest.setAttribute("changeRequest", changeRequest);
httpServletRequest.setAttribute("bugzillaUri", bugzillaUri);

RequestDispatcher rd =
httpServletRequest.getRequestDispatcher("/cm/
changerequest_preview_small.jsp");
rd.forward(httpServletRequest,httpServletResponse);

Now, let’s look at that JSP template. Open the file /src/webapp/cm/
changerequest_preview_small.jsp in OSLC4JBugzilla and browse the
contents. The code near the top extracts the fields we want from the Change Request:

<%
BugzillaChangeRequest changeRequest =
(BugzillaChangeRequest)request.getAttribute("changeRequest");
String bugzillaUri = (String)
request.getAttribute("bugzillaUri");

Date createdDate = (Date) changeRequest.getCreated();
SimpleDateFormat formatter = new SimpleDateFormat();
String created = formatter.format(createdDate);
Date modifiedDate = (Date) changeRequest.getModified();
String modified = formatter.format(modifiedDate);

Person assigneePerson = (Person)
changeRequest.getContributors().get(0);
String assignee = "Unknown";
if (assigneePerson != null)
 assignee = assigneePerson.getMbox();
%>

Then those fields are output in a small table:

<table class="edit_form">
 <tr>
 <th>Status:</th>
 <td><%= changeRequest.getStatus() %></td>
 <th>Product:</th>
 <td><%= changeRequest.getProduct() %></td>
 </tr>

 <tr>
 <th>Assignee:</th>
 <td><%= assignee %></td>
 <th>Component:</th>
 <td><%= changeRequest.getComponent() %></td>
 </tr>

 <tr>
 <th>Priority:</th>
 <td><%= changeRequest.getPriority() %></td>
 <th>Version:</th>
 <td><%= changeRequest.getVersion() %></td>
 </tr>

 <tr>
 <th>Reported:</th>
 <td><%= created %></td>
 <th>Modified:</th>
 <td><%= modified %></td>
 </tr>
</table>

The method largePreview() works in a similar manner and uses the JSP template
changerequest_preview_large.jsp.

VIEWING THE UI PREVIEW

With the adapter running, in a web browser navigate to the following URL:

http://localhost:8080/OSLC4JBugzilla/services/{productId}/
changeRequests/{bugId}/smallPreview

For example, with a product ID of 1 and a bug ID of 10:

http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/
10/smallPreview

http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/10/smallPreview
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/10/smallPreview
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/10/smallPreview
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/10/smallPreview

You should see a small table with details about the bug, similar to this:

A small table of information about a bug in the browser

Now, given a URI link to a resource, we can provide some human-readable and usable
presentations for that link, including a quick peak into the Bug using UI Preview. Later in
this tutorial we’ll explore how other applications can discover and display these
previews.

Providing a delegated UI for selection
and search
Now that we have the basic services and resources defined for
BugzillaChangeRequests (our Bugzilla-specific extension of OSLC ChangeRequests),
our next step is to implement delegated user interface (UI) dialogs to allow the following
actions from an OSLC Consumer:

• Search for and select Bugzilla bugs
• Create a new bug in Bugzilla

For example, a user of the NinaCRM product will be able to search for and add links to
related bugs in Bugzilla without leaving the NinaCRM interface.

For more information on OSLC delegated UIs, see the section about them in the OSLC
core specification.

Because delegated UI dialogs must accept user input and interact with Bugzilla to select
or create bugs, they are more complex than collecting and describing bugs. Here’s how
we’ll approach the process:

1. See how OSLC4J helps provide delegated UI locations to the Service Provider
document

2. Understand how to define a basic dialog with the J2Bugzilla API and generate the
appropriate responses

3. Add methods to BugzillaChangeRequestService for the selection and creation of
change requests

4. Add forms and JavaScript code to handle interacting with the consumer of the
dialogs

5. Test the dialogs to ensure the appropriate response is given

Adding the location of delegated UI dialogs to Service
Providers
Because we’re using OSLC4J, it’s relatively trivial to add links to delegated UIs to our
Service Provider documents.

Open BugzillaChangeRequestService.java in the
org.eclipse.lyo.oslc4j.bugzilla package and search for @OslcDialogs (note the
plural).

These use the imported annotations from OSLC4J:

http://open-services.net/resources/tutorials/oslc-primer/delegated-user-interface-dialogs/
http://open-services.net/resources/tutorials/oslc-primer/delegated-user-interface-dialogs/
http://open-services.net/bin/view/Main/OslcCoreSpecification#Delegated_User_Interface_Dialogs
http://open-services.net/bin/view/Main/OslcCoreSpecification#Delegated_User_Interface_Dialogs
http://open-services.net/bin/view/Main/OslcCoreSpecification#Delegated_User_Interface_Dialogs
http://open-services.net/bin/view/Main/OslcCoreSpecification#Delegated_User_Interface_Dialogs

• org.eclipse.lyo.oslc4j.core.annotation.OslcDialog,
• org.eclipse.lyo.oslc4j.core.annotation.OslcDialogs;, and
• org.eclipse.lyo.oslc4j.core.annotation.OslcQueryCapability;

Here are the annotations for the selection dialog and the capability to query for bugs:

@OslcDialogs(
{
 @OslcDialog
 (
 title = "Change Request Selection Dialog",
 label = "Change Request Selection Dialog",
 uri = "/{productId}/changeRequests/selector",
 hintWidth = "525px",
 hintHeight = "325px",
 resourceTypes = {Constants.TYPE_CHANGE_REQUEST},
 usages = {OslcConstants.OSLC_USAGE_DEFAULT}
)

})

@OslcQueryCapability
(
 title = "Change Request Query Capability",
 label = "Change Request Catalog Query",
 resourceShape = OslcConstants.PATH_RESOURCE_SHAPES + "/" +
Constants.PATH_CHANGE_REQUEST,
 resourceTypes = {Constants.TYPE_CHANGE_REQUEST},
 usages = {OslcConstants.OSLC_USAGE_DEFAULT}
)

As with BugzillaChangeRequests, with the appropriate annotations OSLC4J handles
the conversion of this information to XML or JSON for you – no additional templating
required.

You can explore /src/main/webapp/cm/serviceprovider_html.jsp to see how
we add the links to these to the HTML representation of a Service Provider (under the
Resource Selector Dialog heading).

With this enabled, we’ve defined that the dialog for selecting or querying for bugs will be
at the following URL (assuming your adapter is running at localhost and port 8080):

http://localhost:8080/OSLC4JBugzilla/services/{productID}/
changeRequests/selector

Next, we must create the dialog.

http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/

Adding the dialog to search for and select bugs
As with our methods for returning BugzillaChangeRequests, we add another method to
ourBugzillaChangeRequestService class to handle requests for a delegated UI to
select bugs.

In our OSLC4J Bugzilla Adapter, open BugzillaChangeRequestService.java and
search for the changeRequestSelector() method:

@GET
@Path("selector")
@Consumes({ MediaType.TEXT_HTML, MediaType.WILDCARD })
public void changeRequestSelector(
 @QueryParam("terms") final String terms,
 @PathParam("productId") final String productId
) throws ServletException, IOException
{
 int productIdNum = Integer.parseInt(productId);
 httpServletRequest.setAttribute("productId", productIdNum);
 httpServletRequest.setAttribute("bugzillaUri",
BugzillaManager.getBugzillaUri());

httpServletRequest.setAttribute("selectionUri",uriInfo.getAbsolu
tePath().toString());

 if (terms != null) {
 httpServletRequest.setAttribute("terms", terms);
 sendFilteredBugsReponse(httpServletRequest, productId,
terms);

 } else {
 try {
 RequestDispatcher rd =
httpServletRequest.getRequestDispatcher("/cm/
changerequest_selector.jsp");
 rd.forward(httpServletRequest, httpServletResponse);

 } catch (Exception e) {
 throw new ServletException(e);
 }
 }

}

In short, this method defines two things that could happen if you make a request to a
URL with /changeRequests/selector:

• If the request URL does not have a terms parameter, we dispatch a JSP template
(changerequest_selector.jsp) to display a form for the user to fill in the search
terms and select a bug.

• If the request does have a terms parameter, the request is an AJAX request coming
from the delegated UI that is running in a user’s web browser (code that we’ll discuss
below). We call the sendFilteredBugsReponse()method that performs a Bugzilla
search (using the J2Bugzilla API) and returns the results in a compact JSON format.

Let’s explore the delegated UI to fill in search terms and select bugs in the JSP
template.

Creating the delegated UI for selection
Open /src/main/webapp/cm/changerequest_selector.jsp and explore the
contents.

The JSP page changerequest_selector_dialog.jsp provides the HTML and
JavaScript for a Change Request Selector Dialog. There’s a little bit of HTML, because
the dialog is pretty simple.

Because a fair amount of JavaScript code is required to allow a user to enter search
terms, display search results, allow the user to make a selection and then notify the
delegated UI consumer that a selection has been made, we have stashed those
methods in a bugzilla.js file that we load in the <head> of the returned HTML:

<script type="text/javascript" src="../../../bugzilla.js"></
script>

We’ll explore the various JavaScript methods below.

Allowing users to search for bugs

In changerequest_selector.jsp, here’s the form for the user to enter search
terms:

<input type="search"
 style="width: 335px"
 id="searchTerms"
 placeholder="Enter search terms"
 autofocus>
<button
 type="button"
 onclick="search('<%= selectionUri %>')">Search</button>

Note that when you click the <button>, we call the JavaScript function search(),
which we define in the file src/main/webapp/bugzilla.js.

Open bugzilla.js. Near the top, explore the search() function.

function search(baseUrl){
 var ie = window.navigator.userAgent.indexOf("MSIE");
 list = document.getElementById("results");
 list.options.length = 0;
 var searchMessage =
document.getElementById('searchMessage');
 var loadingMessage =
document.getElementById('loadingMessage');
 xmlhttp = new XMLHttpRequest();
 xmlhttp.onreadystatechange = function() {
 if (xmlhttp.readyState==4 && xmlhttp.status==200) {
 // populate results
 txt = xmlhttp.responseText;
 resp = eval('(' + txt + ')');
 for(var x=0; x<resp.results.length; x++) {
 var item=document.createElement('option');
 item.text = resp.results[x].title;
 item.value = resp.results[x].resource;
 if (ie > 0) {
 list.add(item);
 } else {
 list.add(item, null);
 }
 }

 searchMessage.style.display = 'block';
 loadingMessage.style.display = 'none';
 }
 };
 terms = document.getElementById("searchTerms").value;
 xmlhttp.open("GET", baseUrl + "?terms=" +
encodeURIComponent(terms), true);
 searchMessage.style.display = 'none';
 loadingMessage.style.display = 'block';
 xmlhttp.send();
}

In short, this function does the following:

1. Removes any previous search results from the <select id="results"> element
2. Creates an AJAX request
3. Get the search query from the value of the <input id="searchTerms">

element.

4. Sends an AJAX request to /changeRequests/selector with a terms=
parameter. Recall that this type of request to our adapter will run a search in Bugzilla
and return the results in a JSON format.

5. A callback evaluates the search results with the eval() method, loops through the
results, and adds each result as an <option> element to the #results element.

6. Reveals a loading message while making the request; hides the message when
finished.

Now in our delegated UI, users can search for bugs in Bugzilla, see a list of results, and
select amongst them from a <select> element. Next, we will allow them to do
something with their selection.

Sending the selected bugs back to the OSLC consumer application

Go back to the file changerequest_selector.jsp. Just below the <select
id="results"> element that will hold search results, you’ll see the form <button>s
to submit the selected bug or bugs:

<button style="float: right;" type="button"
 onclick="javascript: cancel()">Cancel</button>
<button style="float: right;" type="button"
 onclick="javascript: select();">OK</button>

When you click the OK button, we call the JavaScript function select(), which is also
defined in the bugzilla.js file.

Open bugzilla.js and search for the select() function:

function select(){
 list = document.getElementById("results");
 if(list.length>0 && list.selectedIndex >= 0) {
 option = list.options[list.selectedIndex];
 sendResponse(option.text, option.value);
 }
}

This method finds the bug that the user has selected
(list.options[list.selectedIndex]) and sends the title (option.text) and
URL (option.value) of the bug in a response to the original window (the
sendResponse() method).

Because we’re sending data from a delegated UI in one browser window back to
another application with a different host and in a different window, we must use either
the window.postMessage method (if supported) or via window.name variables
otherwise.

https://developer.mozilla.org/en-US/docs/DOM/window.postMessage
https://developer.mozilla.org/en-US/docs/DOM/window.postMessage

Explore the sendResponse() method to see how we build the JSON response and
determine which cross-window method to use to send it to the requesting application:

function sendResponse(label, url) {
 var oslcResponse = 'oslc-response:{ "oslc:results": [' +
 ' { "oslc:label" : "' + label + '", "rdf:resource" : "' +
url + '"} ' +
 '] }';

 if (window.location.hash == '#oslc-core-windowName-1.0') {
 // Window Name protocol in use
 respondWithWindowName(oslcResponse);
 } else if (window.location.hash == '#oslc-core-
postMessage-1.0') {
 // Post Message protocol in use
 respondWithPostMessage(oslcResponse);
 }
}

We determine whether or not we want to use Window Name or postMessage by looking
at the location.hash value for the page: either #oslc-core-windowName-1.0 or
#oslc-core-postMessage-1.0. We do this because the requesting client is the
application that must indicate which cross-domain method it supports; the client does so
by requesting our delegated UI with the appropriate hash. We’ll explore this later when
we access this delegated UI in the NinaCRM application.

You can further explore the respondWithPostMessage() and
respondWithWindowName() methods in bugzilla.js to see how we send the
data to the requesting window – it’s taken almost entirely from the examples in the
OSLC Core specification.

Note that the selection dialog above will show all Change Requests available for one
Bugzilla Product. Some additional work could be done to make this more useful by
doing some filtering up-front. For example, it might be useful to show only Change
Requests that are assigned to the current user, or to prioritize recently created Change
Requests.

We’ll put this delegated UI to use later when we implement it in the NinaCRM sample
application.

Next, we’ll create a delegated UI that will allow users to create new bugs in Bugzilla.

http://open-services.net/resources/tutorials/integrating-products-with-oslc/integrating-with-an-oslc-provider/implementing-links-and-previews/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/integrating-with-an-oslc-provider/implementing-links-and-previews/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/integrating-with-an-oslc-provider/implementing-links-and-previews/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/integrating-with-an-oslc-provider/implementing-links-and-previews/

Providing a delegated UI for creating
bugs
Providing a delegated user interface (UI) dialog for creating new resources is similar to
the process for providing one for selecting existing resources: we must create an HTML
Form, the fields within that form, and then set up the server-side handling of the form
submission.

Here’s the plan:

1. Add the location of our delegated UI to our Service Provider representations
2. Create a utility method that accepts a BugzillaChangeRequest and creates a bug

in Bugzilla
3. Create a service to handle requests to display a delegated UI to create bugs.
4. Create a service to accept a BugzillaChangeRequest via HTTP POST (sent from

the delegated UI form) and create a new bug.

Adding the location of the delegated UI for creation to
Service Providers
As with our delegated UI for selection, it’s relatively easy to add the location of our
delegated UI for creation to the various representations of service providers.

Open BugzillaChangeRequestService.java in the
org.eclipse.lyo.oslc4j.bugzilla package and search for @OslcDialog (not plural).
You’ll see two occurrences: one near the top for the Selection Dialog and Query
Capability and one farther down the Creation Dialog:

@OslcDialog
(
title = "Change Request Creation Dialog",
label = "Change Request Creation Dialog",
uri = "/{productId}/changeRequests/creator",
hintWidth = "600px",
hintHeight = "375px",
resourceTypes = {Constants.TYPE_CHANGE_REQUEST},
usages = {OslcConstants.OSLC_USAGE_DEFAULT}
)

With these annotations, OSLC4J handles the conversion of this information to XML or
JSON for you – no additional templating required.

http://open-services.net/resources/tutorials/oslc-primer/delegated-user-interface-dialogs/
http://open-services.net/resources/tutorials/oslc-primer/delegated-user-interface-dialogs/

You can explore /src/main/webapp/cm/serviceprovider_html.jsp to see how
to add the links to the HTML representation of a Service Provider (under the Resource
Creator Dialog heading).

With this enabled, we’ve defined that the dialog for creating new bugs will be at the
following URL (assuming your adapter is running at localhost and port 8080):

http://localhost:8080/OSLC4JBugzilla/services/{productID}/
changeRequests/creator

Creating a bug from an OSLC BugzillaChangeRequest
Before we create the delegated dialog to create new bugs, we will need a server-side
helper utility that can accept a BugzillaChangeRequest and use its information to
create a new bug in Bugzilla.

Locate BugzillaManager.java in the org.eclipse.lyo.oslc4j.bugzilla
package and explore the contents.

This class contains several static utility methods for interacting with Bugzilla using the
j2bugzilla library. BugzillaChangeRequestService.java makes use extensive
use of the methods in this class.

Locate the createBug() method. We first retrieve bug properties from the passed
BugzillaChangeRequest:

String summary = changeRequest.getTitle();
String component = changeRequest.getComponent();
String version = changeRequest.getVersion();
String operatingSystem = changeRequest.getOperatingSystem();
String platform = changeRequest.getPlatform();
String description = changeRequest.getDescription();

Next, if there are missing fields we set some defaults:

http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/

BugFactory factory = new BugFactory().newBug().setProduct(
 product.getName());

if (summary != null) {
 factory.setSummary(summary);
}
if (version != null) {
 factory.setVersion(version);
}
if (component != null) {
 factory.setComponent(component);
}
if (platform != null) {
 factory.setPlatform(platform);
} else
 factory.setPlatform("Other");

if (operatingSystem != null) {
 factory.setOperatingSystem(operatingSystem);
} else
 factory.setOperatingSystem("Other");

if (description != null) {
 factory.setDescription(description);
}

Finally, we call j2bugzilla’s methods to create a bug:

Bug bug = factory.createBug();
ReportBug reportBug = new ReportBug(bug);
bc.executeMethod(reportBug);
newBugId = Integer.toString(reportBug.getID());

And return the ID of the new bug:

return newBugId;

With that utility in place, we can now set up services for our application to serve up a
delegated UI for a user to create a new bug.

Displaying the delegated UI to create new bugs
Retrieving valid field values from Bugzilla and dispatching a template

We will add another method to our BugzillaChangeRequestService class to create
and display a delegated UI to create a new bug.

In our OSLC4J Bugzilla Adapter, open BugzillaChangeRequestService.java and
search for the changeRequestCreator() method.

As with many of our other methods, we first establish which Bugzilla product we’re
working with from the URI:

BugzillaConnector bc =
 BugzillaManager.getBugzillaConnector(httpServletRequest);

Product product = BugzillaManager.getProduct(httpServletRequest,
productId);
httpServletRequest.setAttribute("product", product);

Next, we use the j2bugzilla GetLegalValues API to retrieve the allowed values for the
various bug fields. Here’s the code for retrieving the legal values for the Component
field:

GetLegalValues getComponentValues =
 new GetLegalValues("component", product.getID());
bc.executeMethod(getComponentValues);
List<String> components =
Arrays.asList(getComponentValues.getValues());
httpServletRequest.setAttribute("components", components);

We have similar code for the Operating System, Platform, and Version fields.

Finally, we set a few more attributes and dispatch them all to a .jsp template (/cm/
changerequest_creator.jsp):

httpServletRequest.setAttribute("creatorUri",
uriInfo.getAbsolutePath().toString());
httpServletRequest.setAttribute("bugzillaUri",
BugzillaManager.getBugzillaUri());

RequestDispatcher rd =
httpServletRequest.getRequestDispatcher("/cm/
changerequest_creator.jsp");
rd.forward(httpServletRequest, httpServletResponse);

Building the delegated UI to create new bugs

Now, open /src/main/webapp/cm/changerequest_creator.jsp and explore
the contents.

As with the delegated UI for selection, note the addition of bugzilla.js in the
<head> that has a variety of script methods that we’ll explore soon.

<script type="text/javascript" src="../../../bugzilla.js"></
script>

Next, explore the HTML table and form. We populate the various <select> elements
with the legal values that were passed in from the Java service. For example, here’s the
input for the Component field:

<select name="component">
<%
 for (String c : components) {
%>
<option value="<%=c%>"><%=c%></option>
<%
 }
%>
</select>

You’ll see simliar code for the other fields. We also provide a free-form text <input> for
the Summary…

<input name="summary" class="required text_input"
 type="text" style="width: 400px" id="summary" required
autofocus>

… and a <textarea> for the Description:

<textarea style="width: 400px; height: 150px;"
 id="description" name="description"></textarea>

Finally, when you click the Submit Bug button we call the JavaScript function
create() (from the file src/main/webapp/bugzilla.js):

<input type="button"
 value="Submit Bug"
 onclick="javascript: create('<%= creatorUri %>')">

We’ll explore the create() JavaScript method in more detail below.

Send the values for the new bug back to our adapter

Open bugzilla.js and explore the create() function:

function create(baseUrl){
 var form = document.getElementById("Create");
 xmlhttp = new XMLHttpRequest();
 xmlhttp.onreadystatechange = function() {
 if (xmlhttp.readyState==4 && (xmlhttp.status==201)) {

 txt = xmlhttp.responseText;
 resp = eval('(' + txt + ')');
 // Send response to listener
 sendResponse(resp.title, resp.resource);
 }
 };
 var postData="";
 if (form.component) {
 postData +=
"&component="+encodeURIComponent(form.component.value);
 }
 if (form.summary) {
 postData +=
"&summary="+encodeURIComponent(form.summary.value);
 }
 if (form.version) {
 postData +=
"&version="+encodeURIComponent(form.version.value);
 }
 if (form.op_sys) {
 postData +=
"&op_sys="+encodeURIComponent(form.op_sys.value);
 }
 if (form.platform) {
 postData +=
"&platform="+encodeURIComponent(form.platform.value);
 }
 if (form.description) {
 postData +=
"&description="+encodeURIComponent(form.description.value);
 }
 xmlhttp.open("POST", baseUrl, true);
 xmlhttp.setRequestHeader("Content-type","application/x-www-
form-urlencoded");
 xmlhttp.setRequestHeader("Content-length",postData.length);
 xmlhttp.send(postData);
}

This method takes the values from our form, converts them into URL query string
parameters, and sends data via POST to the createHtmlChangeRequest() method
in our BugzillaChangeRequestService class via XMLHttpRequest().

To see how our adapter handles that POST request, open
BugzillaChangeRequestService.java and search for the
createHtmlChangeRequest() method.

Note that this service expects an encoded URL via POST at the same URL path as our
delegated UI ("creator"):

@POST
@Path("creator")
@Consumes({ MediaType.APPLICATION_FORM_URLENCODED})

Our createHtmlChangeRequest() first builds a BugzillaChangeRequest from the
URL parameters:

BugzillaChangeRequest changeRequest = new
BugzillaChangeRequest();
changeRequest.setComponent(component);
changeRequest.setVersion(version);
changeRequest.setTitle(summary);
changeRequest.setOperatingSystem(op_sys);
changeRequest.setPlatform(platform);
changeRequest.setDescription(description);

Then we use the createBug() method from BugzillaManager (discussed above) to
create a new bug in Bugzilla:

final String newBugId =
BugzillaManager.createBug(httpServletRequest, changeRequest,
productId);

With the bug created, we gather some information about our new bug…

final Bug newBug =
BugzillaManager.getBugById(httpServletRequest, newBugId);
final BugzillaChangeRequest newChangeRequest =
BugzillaChangeRequest.fromBug(newBug);
URI about = getAboutURI(productId + "/changeRequests/" +
newBugId);
newChangeRequest.setAbout(about);

httpServletRequest.setAttribute("changeRequest",
newChangeRequest);
httpServletRequest.setAttribute("changeRequestUri",
newChangeRequest.getAbout().toString());

… and build a small JSON response to return.

httpServletResponse.setContentType("application/json");
httpServletResponse.setStatus(Status.CREATED.getStatusCode());
httpServletResponse.addHeader("Location",
newChangeRequest.getAbout().toString());

PrintWriter out = httpServletResponse.getWriter();
out.print("{\"title\": \"" +
getChangeRequestLinkLabel(newBug.getID(), summary) + "\"," +
 "\"resource\" : \"" + about + "\"}");
out.close();

Back in bugzilla.js the onreadystatechange callback evaluates that JSON
response and uses the sendResponse()method (discussed in more detail in the
previous section) to send some information about the new bug back to the consumer
application (re-copied from above):

xmlhttp.onreadystatechange = function() {
 if (xmlhttp.readyState==4 && (xmlhttp.status==201)) {
 txt = xmlhttp.responseText;
 resp = eval('(' + txt + ')');
 // Send response to listener
 sendResponse(resp.title, resp.resource);
 }
};

We’ll put this dialog to use in the NinaCRM application later on.

We now have the ability to use user interface delegation as a way to provide a simple
way for consumer applications to both create and select bugs. We’ve also exposed this
capability from our service provider resource definition.

Next, we’ll explore how to make it easier for other applications to create new bugs
programmatically.

http://open-services.net/resources/tutorials/integrating-products-with-oslc/integrating-with-an-oslc-provider/making-incident-to-defect-linking-easy/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/integrating-with-an-oslc-provider/making-incident-to-defect-linking-easy/

Providing a creation factory
With OSLC you can allow people to create bugs via Delegated UI; however, like all UI
approaches, an actual human user must be involved. What if you want to support
automated bug creation; for example, enabling a build server to automatically create a
bug whenever there is a test or a build failure?

To allow clients to create new bugs automatically, you need to support an OSLC
Creation Factory as described in theOSLC Core specification.

Adding a method to the adapter to create
BugzillaChangeRequests via HTTP POST
Recall that when we created a delegated UI for creating new bugs, we wrote code in the
BugzillaManager class to use the j2bugzilla API for creation of bugs; we’ll re-use the
createBug() method for automated bug creation via POST.

Adding the Creation Factory to Service Provider documents

Open the file BugzillaChangeRequestService.java in the
org.eclipse.lyo.bugzilla.services package.

First search for the @OslcCreationFactory annotation:

@OslcCreationFactory
(
 title = "Change Request Creation Factory",
 label = "Change Request Creation",
 resourceShapes = {OslcConstants.PATH_RESOURCE_SHAPES + "/" +
Constants.PATH_CHANGE_REQUEST},
 resourceTypes = {Constants.TYPE_CHANGE_REQUEST},
 usages = {OslcConstants.OSLC_USAGE_DEFAULT}
)

Notice that we’ve specified a resourceShapes location; we’ll cover that in more detail
below.

As with our other services, OSLC4J uses this annotation and automatically adds the
URI for the creation factory to our XML and JSON Service Provider documents. (You will
have to manually add it to the serviceprovider_html.jsp template to add it to the
HTML representation.)

Because we haven’t set any different path, the creation factory will be available at the
root path of our BugzillaChangeRequestService class which is {productId}/

http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-a-delegated-ui-for-creation/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-a-delegated-ui-for-creation/
http://open-services.net/bin/view/Main/OslcCoreSpecification#Creation_Factories
http://open-services.net/bin/view/Main/OslcCoreSpecification#Creation_Factories
http://open-services.net/bin/view/Main/OslcCoreSpecification#Creation_Factories
http://open-services.net/bin/view/Main/OslcCoreSpecification#Creation_Factories
http://open-services.net/bin/view/Main/OslcCoreSpecification
http://open-services.net/bin/view/Main/OslcCoreSpecification

changeRequests. For example, if your adapter is running at localhost:8080 and
the product ID is 1, the creation factory will be at the following URL:

http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests

Our adapter recognizes that you are invoking the Creation Factory (instead of
requesting a listing of bugs) if you request that URL using HTTP POST (instead of
GET).

Handling BugzillaChangeRequests received via POST

In BugzillaChangeRequestService.java, search for the the
addChangeRequest() method. Note the JAX-RS annotations:

@POST
@Consumes({OslcMediaType.APPLICATION_RDF_XML,
OslcMediaType.APPLICATION_XML, OslcMediaType.APPLICATION_JSON})
@Produces({OslcMediaType.APPLICATION_RDF_XML,
OslcMediaType.APPLICATION_XML, OslcMediaType.APPLICATION_JSON})

The @Consumes annotation indicates that the method accepts a
BugzillaChangeRequest in RDF/XML, XML, or JSON format; the @Produces
annotation indicates that it will return the same.

The following code in the addChangeRequest() method creates a new Bugzilla bug
from an OSLC BugzillaChangeRequest object (using the previously discussed
createBug() method)::

final String newBugId =
BugzillaManager.createBug(httpServletRequest,
 changeRequest, productId);

Next, we convert the bug into a BugzillaChangeRequest:

final Bug newBug =
BugzillaManager.getBugById(httpServletRequest,
 newBugId);

BugzillaChangeRequest newChangeRequest;

try {
 newChangeRequest = BugzillaChangeRequest.fromBug(newBug);
} catch (Exception e) {
 throw new WebApplicationException(e);
}

Then we return the new BugzillaChangeRequest as the body of a POST response:

http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests

URI about = getAboutURI(productId + "/changeRequests/" +
newChangeRequest.getIdentifier());
newChangeRequest.setServiceProvider(

ServiceProviderCatalogSingleton.getServiceProvider(httpServletRe
quest, productId).getAbout());
newChangeRequest.setAbout(about);
setETagHeader(getETagFromChangeRequest(newChangeRequest),
httpServletResponse);

return Response.created(about).entity(changeRequest).build();

Note that we set the Location header (via Response.created()) to the about URI
for the new BugzillaChangeRequest; this is a SHOULD requirement of the Core
specification.

Try it out!

If you can create new bugs on your Bugzilla application, you should be able to create a
bug via HTTP to our adapter.

1. In Firefox or Chrome, open the Poster plugin.
2. In the URL field, type the URL for the Creation Factory (replace {ProductID} with a

valid ID for a Bugzilla product):
http://oslc:8080/OSLC4JBugzilla/services/1/changeRequests

3. In the User Auth fields, type your Bugzilla username and password.
4. On the Headers tab, for the Name type Content-Type and for the Value type

application/rdf+xml
5. In the Body field enter the following example RDF/XML content. Change

you@example.com to reflect your Bugzilla login/email; you might have to change
some values depending on how your Bugzilla product has been configured,
specifically bugz:operatingSystem and bugz:component.
 <rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:oslc="http://open-services.net/ns/core#"
 xmlns:bugz="http://www.bugzilla.org/rdf#"
 xmlns:foaf="http://xmlns.com/foaf/0.1/"
 xmlns:dcterms="http://purl.org/dc/terms/"
 xmlns:oslc_cm="http://open-services.net/ns/cm#">

 <oslc_cm:ChangeRequest>
 <bugz:operatingSystem>Linux</bugz:operatingSystem>
 <rdf:type rdf:resource="http://open-services.net/ns/
cm#BugzillaChangeRequest"/>
 <oslc_cm:status>NEW</oslc_cm:status>
 <bugz:priority>---</bugz:priority>

http://open-services.net/bin/view/Main/OslcCoreSpecification#Creation_Factories
http://open-services.net/bin/view/Main/OslcCoreSpecification#Creation_Factories
http://open-services.net/bin/view/Main/OslcCoreSpecification#Creation_Factories
http://open-services.net/bin/view/Main/OslcCoreSpecification#Creation_Factories
http://oslc:8080/OSLC4JBugzilla/services/1/changeRequests
http://oslc:8080/OSLC4JBugzilla/services/1/changeRequests
mailto:you@example.com
mailto:you@example.com
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://open-services.net/ns/core#
http://open-services.net/ns/core#
http://www.bugzilla.org/rdf#
http://www.bugzilla.org/rdf#
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/
http://purl.org/dc/terms/
http://purl.org/dc/terms/
http://open-services.net/ns/cm#
http://open-services.net/ns/cm#
http://open-services.net/ns/cm#BugzillaChangeRequest
http://open-services.net/ns/cm#BugzillaChangeRequest
http://open-services.net/ns/cm#BugzillaChangeRequest
http://open-services.net/ns/cm#BugzillaChangeRequest

 <dcterms:title>New bug entered from OSLC Adapter</
dcterms:title>
 <bugz:version>unspecified</bugz:version>
 <bugz:platform>PC</bugz:platform>
 <dcterms:contributor>
 <foaf:Person rdf:about="http://oslc:8080/OSLC4JBugzilla/
person?mbox=you%40example.com">
 <foaf:mbox>you@example.com</foaf:mbox>
 </foaf:Person>
 </dcterms:contributor>
 <bugz:component>Server</bugz:component>
 <oslc_cm:severity>Unclassified</oslc_cm:severity>
 </oslc_cm:ChangeRequest>
 </rdf:RDF>
6. Click Post to execute the HTTP POST method. You should receive a 201 Created

status header and the response body should contain the RDF/XML
BugzillaChangeRequest representation of the new bug.

Providing a ResourceShape document
To make it possible for client programs to automatically determine which
BugzillaChangeRequest fields are required and the allowed values for those fields, we
should provide a Resource Shape for every creation factory.

Resource Shapes are descriptive documents that define the set of OSLC Properties
expected in a resource for specific operations (i.e. creation, update or query) along with
the value types, allowed values, cardinality and optionality of each OSLC property. A
client can use this information when creating new resources.

Fortunately, OSLC4J automates the creation of Resource Shape documents from our
existing description of a BugzillaChangeRequest. All we must do is declare the
location in our @OslcCreationFactory annotation:

resourceShapes = {OslcConstants.PATH_RESOURCE_SHAPES + "/" +
Constants.PATH_CHANGE_REQUEST}

Which indicates the resource shape will be located at the URI resourceShapes/
changeRequest. For example if your Bugzilla adapter is running at localhost:
8080, the Resource Shape will be available at this URL:

http://localhost:8080/OSLC4JBugzilla/services/resourceShapes/
changeRequest

You can open http://localhost:8080/OSLC4JBugzilla/services/resourceShapes/
changeRequest in a browser to view the Resource Shape as an RDF/XML document.

http://oslc:8080/OSLC4JBugzilla/person?mbox=you%40example.com
http://oslc:8080/OSLC4JBugzilla/person?mbox=you%40example.com
http://oslc:8080/OSLC4JBugzilla/person?mbox=you%40example.com
http://oslc:8080/OSLC4JBugzilla/person?mbox=you%40example.com
mailto:you@example.com
mailto:you@example.com
http://open-services.net/resources/tutorials/oslc-primer/resourceshapes/
http://open-services.net/resources/tutorials/oslc-primer/resourceshapes/
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;table=up#Overview
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;table=up#Overview
http://localhost:8080/OSLC4JBugzilla/services/resourceShapes/changeRequest
http://localhost:8080/OSLC4JBugzilla/services/resourceShapes/changeRequest
http://localhost:8080/OSLC4JBugzilla/services/resourceShapes/changeRequest
http://localhost:8080/OSLC4JBugzilla/services/resourceShapes/changeRequest
http://localhost:8080/OSLC4JBugzilla/services/resourceShapes/changeRequest
http://localhost:8080/OSLC4JBugzilla/services/resourceShapes/changeRequest
http://localhost:8080/OSLC4JBugzilla/services/resourceShapes/changeRequest
http://localhost:8080/OSLC4JBugzilla/services/resourceShapes/changeRequest

(You can also use the Poster plugin with an Accept header of application/json to
retrieve it in JSON format.)

Note that the document includes not only OSLC CM properties such as
relatedChangeRequest or inprogress, but also Bugzilla-specific properties like
priority and version; this indicates it was assembled from our
BugzillaChangeRequest class.

Because these documents are not really meant to be human-readable, you don’t have
to build a HTML representation in a JSP template as we have for other resources.

Wrapping up
Our Bugzilla adapter now allows Bugzilla to be a reasonably complete OSLC CM
provider application. In the next section, we’ll take a different application (NinaCRM)
and extend it to be an OSLC consumer that can take advantage of all the work we’ve
done here.

Integrating with an OSLC provider
In this section, we’ll integrate a sample homegrown Customer Relationship
Management (CRM) with Bugzilla. Because Bugzilla (via our adapter that we built in the
last section) is now an OSLC Change Management Provider, we can integrate
NinaCRM with Bugzilla by making NinaCRM an OSLC-CM Consumer.

First up, we’ll discuss the specific use cases that we want to support.

ASIDE: Why is the sample application called "NinaCRM"?

In older versions of this tutorial, we had a fictional protagonist named Nina who
"designed" these applications. I've removed her story from this tutorial, but her legacy
lives on in our sample application.

Sample use cases for an OSLC-CM
Consumer
Our NinaCRM sample application presents a number of use cases that could benefit
from OSLC.

NinaCRM is a Customer Relationship Management system that allows employees to
store and track interactions with customers. First, let’s explore how a typical interaction
between a customer and a support representative:

1. Customer calls with a problem
2. Support rep brings up the record for the Customer, or creates one if necessary
3. Support rep finds the last incident involving the customer, or creates a new one if

necessary.
4. Support rep searches for the customer’s problem in the company’s defect system

(Bugzilla). If found, add the defect ID number to the Incident record.
5. If Defect includes work-around or fix, give it to the Customer
6. If the customer is satisfied with the solution, close the Incident

A better integration between Bugzilla and the NinaCRM system will make the process
work more smoothly and efficiently. Here are the top items we want to target with our
integration work:

1. Linking Incidents to bugs is too difficult: It takes support reps too much time to
leave the CRM web UI and search for solutions to customer problems manually
using Bugzilla. First, we should use OSLC UI previews to allow reps to see more
details about linked bugs without leaving the NinaCRM application. Then we should
automate the process of entering bugs by modifying NinaCRM system to use OSLC
Delegated UI and let support reps search, create, and link to bugss without leaving
the CRM web UI.

2. Customer notifications are a manual process: Customers can request notification
whenever a specific bug is updated. Customer reps have to set aside time each
week to review customer requests and check on bug status. We can surely
automate this entire process, including writing and sending an email notification to
each customer.

A Plan of Action
Here’s our plan of action to add OSLC-CM support to NinaCRM.

Milestone 1: Use links and OSLC UI Preview

Modify NinaCRM to enable OSLC UI Preview for links to Bugzilla bugs

http://en.wikipedia.org/wiki/Customer_relationship_management
http://en.wikipedia.org/wiki/Customer_relationship_management

Milestone 2: Use OSLC Delegated UI for creating and selecting
Bugzilla bugs to link to

Add to CRM’s Incident page ability to link via Delegated UI

Milestone 3: Use OSLC protocol to automate customer notifications
• Create a program that can run as a scheduled job, e.g. via build system
• This program will query NinaCRM for list of notification requests and check the

associated bugs
• If the bug has updated since last run, send an email to customer with summary

First up, we’ll implement OSLC links and previews in NinaCRM.

Implementing links and UI previews
In this section, we’ll add the ability to quickly preview linked resources to the NinaCRM
sample application.

Introducing OSLC UI Preview
OSLC UI Previews makes it easy to show an in-context preview of a resource when a
user “hovers” over the link to that resource, so the user can see what is at the other end
and decide whether or not to click through to get more information. The illustration
below shows UI Preview in action on IBM Rational’s Jazz.net site. A user has put his
mouse-pointer over a link to a Build and a preview of that build has appeared on the
screen:

Sample UI preview

Here’s how UI Preview works in an OSLC consumer:

1. Start with a link to a resource.
2. You send an HTTP GET request to that URL with an Accept header to indicate that

you want the UI Preview representation.
3. The OSLC Provider will respond with the Compact representation, which includes

links to HTML previews.
4. You send an HTTP GET for the small or large preview.
5. The OSLC provider returns HTML that you can show to the user.

We explored the OSLC Provider side of this in more detail earlier in this tutorial.

http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-ui-previews/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-ui-previews/

Example XML for a UI preview

Here’s an example of the XML that an OSLC Provider will return when you request the
UI Preview representation of a resource:

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dcterms="http://purl.org/dc/terms/"
 xmlns:oslc="http://open-services.net/ns/core#">
 <oslc:Compact
 rdf:about="http://localhost:8080/OSLC4JBugzilla/services/1/
changeRequests/10">
 <dcterms:title>incidents common connexion</dcterms:title>
 <oslc:shortTitle>ChangeRequest 10</oslc:shortTitle>
 <oslc:icon rdf:resource="http://example.com/bugzilla/
images/favicon.ico" />
 <oslc:smallPreview>
 <oslc:Preview>
 <oslc:document
 rdf:resource="http://localhost:8080/OSLC4JBugzilla/
services/1/changeRequests/10/smallPreview" />
 <oslc:hintWidth>11em</oslc:hintWidth>
 <oslc:hintHeight>45em</oslc:hintHeight>
 </oslc:Preview>
 </oslc:smallPreview>
 <oslc:largePreview>
 <oslc:Preview>
 <oslc:document
 rdf:resource="http://localhost:8080/OSLC4JBugzilla/
services/1/changeRequests/10/largePreview" />
 <oslc:hintWidth>20em</oslc:hintWidth>
 <oslc:hintHeight>45em</oslc:hintHeight>
 </oslc:Preview>
 </oslc:largePreview>
 </oslc:Compact>
</rdf:RDF>

The sample above includes both a small (<oslc:smallPreview>) and large
(<oslc:largePreview>). Both have a document URI (rdf:resource) which is the
location of the HTML version of the preview. Each preview also includes a width
(oslc:hintWidth) and height (oslc:hintHeight) which tell you how much space
you should give the preview in your web page.

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://purl.org/dc/terms/
http://purl.org/dc/terms/
http://open-services.net/ns/core#
http://open-services.net/ns/core#
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/10
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/10
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/10
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/10
http://example.com/bugzilla/images/favicon.ico
http://example.com/bugzilla/images/favicon.ico
http://example.com/bugzilla/images/favicon.ico
http://example.com/bugzilla/images/favicon.ico
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/10/smallPreview
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/10/smallPreview
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/10/smallPreview
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/10/smallPreview
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/10/largePreview
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/10/largePreview
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/10/largePreview
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/10/largePreview

Implementing OSLC UI Preview
Adding the ability to view UI Previews for links in an application can be done almost
entirely with HTML and JavaScript code within web pages that display links.

First, we must provide a server-side proxy service. We’ll explain that first, then show
how the HTML and JavaScript implementation works.

Working Around the Same Origin Policy with a Proxy Service

Anytime you display a link in a web page and you want to offer UI Preview for that link,
you need to run some JavaScript to get the UI Preview representation of the link, parse
the UI preview, and display a nice “tool tip” style popup that shows the UI Preview.

However, there’s a problem: for security reasons, JavaScript code running in a browser
cannot call just any URL. Code can only call URLs that have the Same Origin, in other
words URLs with the same hostname and port number as the page that hosts the code.
Since we want to be able to preview resources at any URL, we need a way to get
around this restriction.

One way to work around the Same Origin Policy is to set up a proxy service inside each
application that needs it, and that’s how we’re going to approach it.

The NinaCRM application includes a simple proxy service; we won’t look at the proxy
service in much detail. You can explore the source code in the file
ProxyServlet.java in the org.eclipse.lyo.samples.ninacrm package. The service
is mapped to the /proxy path and expects a uri parameter.

With the simple proxy service, you can send the URL http://example.com/
anything/etc to the proxy with the following URL:

http://localhost:8181/ninacrm/proxy?uri=http://example.com/
anything/etc

The proxy service will call the URL specified with the same method and headers as the
original request and the return the results.

With a proxy service, we can now implement the rest of UI Previews in the browser.

Displaying Links to resources

Starting the NinaCRM sample application and the Bugzilla adapter.

Open http://localhost:8181/ninacrm/ in a web browser. You’ll see a sample incident:

http://en.wikipedia.org/wiki/Same_origin_policy
http://en.wikipedia.org/wiki/Same_origin_policy
http://example.com/anything/etc
http://example.com/anything/etc
http://example.com/anything/etc
http://example.com/anything/etc
http://localhost:8181/ninacrm/proxy?uri=http://example.com/anything/etc
http://localhost:8181/ninacrm/proxy?uri=http://example.com/anything/etc
http://localhost:8181/ninacrm/proxy?uri=http://example.com/anything/etc
http://localhost:8181/ninacrm/proxy?uri=http://example.com/anything/etc
http://open-services.rtp.raleigh.ibm.com/resources/tutorials/integrating-products-with-oslc/running-the-examples/
http://open-services.rtp.raleigh.ibm.com/resources/tutorials/integrating-products-with-oslc/running-the-examples/
http://localhost:8181/ninacrm/
http://localhost:8181/ninacrm/

Sample incident #676 in the NinaCRM sample application

At the bottom, find the Related Defects heading. This is where we show links to related
bugs in Bugzilla; the HTML is a simple unordered list:

<h3>Related Defects</h3>
<ul id="linkList">
 <a href="http://localhost:8080/OSLC4JBugzilla/services/
1/changeRequests/2">Bug #2
 <a href="http://localhost:8080/OSLC4JBugzilla/services/
1/changeRequests/1">Bug #1
 <a href="http://localhost:8080/OSLC4JBugzilla/services/
1/changeRequests/8">Bug #8

Note that the URLs are to our Bugzilla adapter.

Without any JavaScript, this would function perfectly well to navigate to the linked bugs.
However, we can enhance these links to provide a UI preview when you hover over
them.

Showing UI Previews via Dojo Tooltip Widgets

Throughout this, we’ll be using the Dojo JavaScript toolkit to smooth out browser
differences and build UI components like buttons and tooltips.

http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/2
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/2
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/2
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/2
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/1
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/1
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/1
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/1
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/8
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/8
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/8
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/8
http://open-services.net/resources/tutorials/integrating-products-with-oslc/integrating-with-an-oslc-provider/implementing-links-and-previews/dojotoolkit.org/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/integrating-with-an-oslc-provider/implementing-links-and-previews/dojotoolkit.org/
http://dojotoolkit.org/reference-guide/1.8/dijit/Tooltip.html
http://dojotoolkit.org/reference-guide/1.8/dijit/Tooltip.html

Open the file index.jsp in /src/main/webapp/ and search for
dojo.addOnLoad(addPreviewMouseOverHandlers).

Here, when the page is done loading we use the dojo.query() method to get all the
links on the page, and then for each link we add an event handler to run the
showPreview() method when someone mouses over the link.

dojo.addOnLoad(addPreviewMouseOverHandlers);
var hostname ="localhost";

function addPreviewMouseOverHandlers() {
 dojo.query("a").forEach(function(elem) {
 elem.onmouseover = function() { showPreview(elem); };
 });
}

Here’s the showPreview() method:

function showPreview(elem) { // (1)
 var previewURI = elem.getAttribute("href"); // (2)
 if (!previewURI) return;
 dojo.xhrGet({ // (3)
 url: "http://"+hostname+":8181/ninacrm/proxy?uri=" +
previewURI,
 handleAs:"xml",
 headers: {
 "Accept": "application/x-oslc-compact+xml", // (4)
 },
 load: function(data) {
 try {
 var previewData = parsePreview(data); // (5)
 var html = "<iframe src='" + previewData.uri + "' "; //
(6)
 var w = previewData.width ? previewData.width : "30em";
 var h = previewData.height ? previewData.height :
"10em";
 html += " style='border:0px; height:" + h + "; width:" +
w + "'";
 html += "></iframe>";
 var tip = new dijit.Tooltip({label: html, connectId:
elem}); // (7)
 tip.open(elem);
 } catch (e) { // (8)
 var tip = new dijit.Tooltip({label: "Error parsing",
connectId: elem});
 tip.open(elem);

 }
 },
 error: function (error) {
 var tip = new dijit.Tooltip({label: "Preview not found",
connectId: elem});
 tip.open(elem); // (9)
 }
 });
}

Here’s how it works:

1. We pass the link as an argument
2. Retrieve the href from the link
3. We then use the dojo.xhrGet() method to request that URL using the proxy

service.
4. We pass a header with name Accept and value application/x-oslc-compact

+xml to indicate that we want the UI Preview representation of the linked resource.
5. When the data is returned, we parse it using the parsePreview() method

(discussed below) to retrieve the URL for the preview, the height, and the width.
6. We start to build an HTML <iframe> that displays the preview URL
7. We use the Dojo tooltip to show the preview.

We also account for errors in parsing the XML or if the link fails to load.

Here’s the parsePreview() method that we use to parse the XML:

function parsePreview(xml) { // (1)
 var ret = {};
 var compact = firstChild(firstChild(xml));
 var preview = firstChild(
 firstChildNamed(compact,'oslc:smallPreview')); // (2)
 if (preview) {
 var document = firstChildNamed(preview, 'oslc:document');
 if (document) ret.uri =
document.getAttribute('rdf:resource');
 var height = firstChildNamed(preview, 'oslc:hintHeight');
 ret.height = height.textContent;
 var width = firstChildNamed(preview, 'oslc:hintWidth');
 ret.width = width.textContent;
 }
 return ret;
}

function firstChild(e) { // (3)
 for (x=0; x<e.childNodes.length; x++) {

 if (e.childNodes[x].nodeType == Node.ELEMENT_NODE) {
 return e.childNodes[x];
 }
 }
}

function firstChildNamed(e, nodeName) { // (4)
 for (x=0; x<e.childNodes.length; x++) {
 if (e.childNodes[x].nodeType == Node.ELEMENT_NODE
 && e.childNodes[x].nodeName == nodeName) {
 return e.childNodes[x];
 }
 }
}

And here’s how it works:

1. We pass the parsePreview() method the XML data from the OSLC provider.
2. We build and return an object (ret) with the following properties:

• uri: the preview URL (note that this implementation only checks for the
oslc:smallPreview; there could also be an oslc:largePreview)

• height: the hinted height for the preview
• width: the hinted width for the preview

The firstChild() and firstChildNamed() methods are simple tools to drill down
into the XML and get to the nodes we care about.

Try it out!

If you’re running the sample applications, open http://localhost:8181/ninacrm/ in a web
browser.

Hover over any of the Related Defects links. (You will probably have to log in with your
Bugzilla username and password.) You should see a tooltip appear with the small
preview of the bug:

http://localhost:8181/ninacrm/
http://localhost:8181/ninacrm/

Small UI preview of a bug that is linked from the sample incident

Next up, we’ll explore how to use OSLC Delegated UIs to allow our support reps to both
select and create new bugs in Bugzilla without leaving the NinaCRM application.

Implementing OSLC Delegated UIs
In the previous section, we added the ability to display a small preview of
OSLC4JBugzillailla bugs in the NinaCRM application. Now, we’ll take it a step further
and allow our support reps to create and select bugs in NinaCRM.

Introduction to OSLC Delegated UI
OSLC Delegated UI is a way for a web application to provide a UI for creating and
selecting resources, one that can be used by other web applications.

To explain why it’s called “Delegated” UI, consider our example: we want the NinaCRM
system to be able to create and select bugs managed by the separate
OSLC4JBugzillailla system; however, we do not want to create a new UI to collect the
information or duplicate OSLC4JBugzillailla’s methods of checking that the information
is valid. Instead, we want todelegate the creation and selection of bugs to the
OSLC4JBugzillailla system.

By using Delegated UI, Nina will enable support reps to add links from Incidents to bugs
without leaving the comfort of the CRM system.

The mechanics of Delegated UI

Earlier in this tutorial, we walked through an implementation of Delegated UIs for
OSLC4JBugzillailla, both for selecting bugs and creating new bugs. In addition to
providing the UI and handling the results, the OSLC4JBugzillailla adapter (or any other
OSLC provider application) announces in its Service Provider Documents the URL
location and recommended size of the UI.

The application that wants to use the Delegated UI (the OSLC Consumer) creates an
<iframe> for the Delegated UI so that the user can interact with it. The Consumer
application must also listen to the <iframe> do something with the results of the user’s
actions.

You can learn more about Delegated UI in the OSLC Primer.

Parsing the Service Provider Documents
Note: The NinaCRM sample application does _not_ retrieve a Service Provider
document and parse its contents to locate Delegated UIs; for simplicity, the URLs for the
delegated UIs are hard-coded in the index.jsp file. A better implementation would be
one that properly parses the Service Provider and thus could work with any OSLC
Provider. We’re not angels here; sorry.

http://open-services.net/resources/tutorials/oslc-primer/delegated-user-interface-dialogs/
http://open-services.net/resources/tutorials/oslc-primer/delegated-user-interface-dialogs/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-a-delegated-ui-for-selection/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-a-delegated-ui-for-selection/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-a-delegated-ui-for-creation/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-a-delegated-ui-for-creation/
http://open-services.rtp.raleigh.ibm.com/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-service-providers-and-catalogs/
http://open-services.rtp.raleigh.ibm.com/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-service-providers-and-catalogs/
http://open-services.net/resources/tutorials/oslc-primer/delegated-user-interface-dialogs/
http://open-services.net/resources/tutorials/oslc-primer/delegated-user-interface-dialogs/

As we noted when we implemented Service Providers and Catalogs, one of the cores of
OSLC is that clients should not have to hard-code any URLs other than a Service
Provider Catalog. Clients should be able to parse the Catalog and navigate from the
Catalog to the Service Providers; the Service Providers will then expose the available
OSLC services.

If you’d like to follow along with a real Service Provider Catalog or Service Provider, see
the “Viewing the machine-readable formats of a Service Provider Catalog” section near
the bottom of this section.

Below is a part of a sample RDF/XML representation of a Service Provider that exposes
both a Delegated UI for selection (<oslc:selectionDialog>) and a Delegated UI
for Creation (<oslc:creationDialog>):

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dcterms="http://purl.org/dc/terms/"
 xmlns:oslc="http://open-services.net/ns/core#">

 <oslc:ServiceProvider rdf:about="http://localhost:8080/
OSLC4JBugzilla/services"> <!-- (1)-->
 <dcterms:title>Service Provider Catalog</dcterms:title>
 <dcterms:description>
 Simple OSLC Reference Implementation (SORI) for Change
Management Service Document
 </dcterms:description>

 <!-- etc. etc. etc. omitted everything up to oslc:service
property -->

 <oslc:service> <!-- (2)-->
 <oslc:Service>
 <oslc:domain rdf:resource="http://open-services.net/
ns/cm#"/>

 <!-- etc. etc. etc. omitted everything Delegated UI
information -->

 <oslc:selectionDialog> <!-- (3)-->
 <oslc:Dialog>
 <dcterms:title>CM Resource Selector</
dcterms:title>
 <oslc:label>Picker</oslc:label> <!-- (4)-->
 <oslc:dialog <!-- (5)-->

http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-service-providers-and-catalogs/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-service-providers-and-catalogs/
http://open-services.rtp.raleigh.ibm.com/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-service-providers-and-catalogs/
http://open-services.rtp.raleigh.ibm.com/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-service-providers-and-catalogs/
http://open-services.rtp.raleigh.ibm.com/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-service-providers-and-catalogs/
http://open-services.rtp.raleigh.ibm.com/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-service-providers-and-catalogs/
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://purl.org/dc/terms/
http://purl.org/dc/terms/
http://open-services.net/ns/core#
http://open-services.net/ns/core#
http://localhost:8080/OSLC4JBugzilla/services
http://localhost:8080/OSLC4JBugzilla/services
http://localhost:8080/OSLC4JBugzilla/services
http://localhost:8080/OSLC4JBugzilla/services
http://open-services.net/ns/cm#
http://open-services.net/ns/cm#
http://open-services.net/ns/cm#
http://open-services.net/ns/cm#

 rdf:resource="http://10.0.1.3:8080/
OSLC4JBugzilla/services/1/changeRequests/selector"/>
 <oslc:hintHeight>325px</oslc:hintHeight> <!--
(6)-->
 <oslc:hintWidth>525px</oslc:hintWidth>
 <oslc:resourceType <!-- (7)-->
 rdf:resource="http://open-services.net/ns/
cm#ChangeRequest"/>
 <oslc:usage rdf:resource="http://open-
services.net/ns/core#default"/>
 </oslc:Dialog>
 </oslc:selectionDialog>

 <oslc:creationDialog> <!-- (8)-->
 <oslc:Dialog>
 <dcterms:title>CM Resource Creator</
dcterms:title>
 <oslc:label>Creator</oslc:label>
 <oslc:dialog rdf:resource=
 "http://10.0.1.3:8080/OSLC4JBugzilla/
services/1/changeRequests/creator"/>
 <oslc:hintHeight>375px</oslc:hintHeight>
 <oslc:hintWidth>600px</oslc:hintWidth>
 <oslc:resourceType rdf:resource=
 "http://open-services.net/ns/
cm#ChangeRequest"/>
 <oslc:usage rdf:resource="http://open-
services.net/ns/core#default"/>
 </oslc:Dialog>
 </oslc:creationDialog>
 </oslc:Service>
 </oslc:service>

 </oslc:ServiceProvider>
</rdf:RDF>

Note that both of the delegated UIs have a URL location (rdf:resource) and
suggested sizes for the dialogs (<oslc:hintHeight> and <oslc:hintWidth>).

Since we now know this information, we can add delegated UIs to the NinaCRM
application.

http://10.0.1.3:8080/OSLC4JBugzilla/services/1/changeRequests/selector
http://10.0.1.3:8080/OSLC4JBugzilla/services/1/changeRequests/selector
http://10.0.1.3:8080/OSLC4JBugzilla/services/1/changeRequests/selector
http://10.0.1.3:8080/OSLC4JBugzilla/services/1/changeRequests/selector
http://open-services.net/ns/cm#ChangeRequest
http://open-services.net/ns/cm#ChangeRequest
http://open-services.net/ns/cm#ChangeRequest
http://open-services.net/ns/cm#ChangeRequest
http://open-services.net/ns/core#default
http://open-services.net/ns/core#default
http://open-services.net/ns/core#default
http://open-services.net/ns/core#default
http://10.0.1.3:8080/OSLC4JBugzilla/services/1/changeRequests/creator
http://10.0.1.3:8080/OSLC4JBugzilla/services/1/changeRequests/creator
http://10.0.1.3:8080/OSLC4JBugzilla/services/1/changeRequests/creator
http://10.0.1.3:8080/OSLC4JBugzilla/services/1/changeRequests/creator
http://open-services.net/ns/cm#ChangeRequest
http://open-services.net/ns/cm#ChangeRequest
http://open-services.net/ns/cm#ChangeRequest
http://open-services.net/ns/cm#ChangeRequest
http://open-services.net/ns/core#default
http://open-services.net/ns/core#default
http://open-services.net/ns/core#default
http://open-services.net/ns/core#default

Adding Delegated UI dialogs to the NinaCRM
To follow along, start the NinaCRM application and the Bugzilla Adapter application.
Open the sample NinaCRM incident page at http://localhost:8181/ninacrm/.

The HTML and JavaScript for the incident page are in the file index.jsp in /src/
main/webapp/.

Buttons to launch the dialogs

First, we add two buttons to the HTML code of the incident page.

In the index.jsp file, search for the comment Add link via OSLC Delegated
Picker. There you’ll find the HTML for the buttons:

<button id="selectDefectButton" type="button"
 dojoType="dijit.form.Button" onclick="selectDefect()">
 Select Defect to Link to...
</button>

<button id="createDefectButton" type="button"
 dojoType="dijit.form.Button" onclick="createDefect()">
 Create Defect to Link to...
</button>

Note that each button uses the Dojo/Dijit button framework and launches a JavaScript
method when clicked.

Next, we add the selectDialog() and createDialog() JavaScript methods.

The following methods use only the Post Message Protocol from the OSLC specification
and will accordingly only work in newer browsers. To support older browsers, you
should also implement the Window Name protocol. For more information, see the OSLC
Core Specification and our our implementation of Delegated UIs.

Because the end-result of both actions is the same – we will be adding a link to either a
new or existing bug in Bugzilla – both methods invoke the same
postMessageProtocol() method with the appropriate URL:

function selectDefect() {
 postMessageProtocol(selectDialogURL);
}

function createDefect() {
 postMessageProtocol(createDialogURL);
}

http://localhost:8181/ninacrm/
http://localhost:8181/ninacrm/
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;up=#Post_Message_and_Window_Name_pro
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;up=#Post_Message_and_Window_Name_pro
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;up=#Post_Message_and_Window_Name_pro
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;up=#Post_Message_and_Window_Name_pro
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;up=#Post_Message_and_Window_Name_pro
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;up=#Post_Message_and_Window_Name_pro
http://open-services.rtp.raleigh.ibm.com/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-a-delegated-ui-for-selection/
http://open-services.rtp.raleigh.ibm.com/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-a-delegated-ui-for-selection/

Here’s the postMessageProtocol() method that our buttons invoke:

var iframe;
function postMessageProtocol(dialogURL) {
 // Step 1
 dialogURL += '#oslc-core-postMessage-1.0';

 // Step 2
 var listener = dojo.hitch(this, function (e) {
 var HEADER = "oslc-response:";
 if (e.source == iframe.contentWindow &&
e.data.indexOf(HEADER) === 0) {
 // Step 4
 window.removeEventListener('message', listener, false);
 destroyFrame(iframe);
 handleMessage(e.data.substr(HEADER.length));
 }
 });
 window.addEventListener('message', listener, false);

 // Step 3
 iframe = document.createElement('iframe');
 iframe.width = 500;
 iframe.height = 375;
 iframe.src = dialogURL;

 // Step 4
 displayFrame(iframe);
 container.appendChild(iframe);
};

Here’s how it works:

1. First, we add the hash #oslc-core-postMessage-1.0 to the dialog URLs; this
will tell the OSLC Provider application that we’re using the Post Message protocol to
communicate with the iframe.

2. We add an event listener that listens for a postMessage response with an oslc-
response header and then invokes the handleMessage() method (see below)

3. We create an iframe element with the content of the dialog URL.
4. We then display the iframe element with the displayFrame() method (see

below).

Here’s the displayFrame() method, which is basically a wrapper for the Dojo/Dijit
dialog method:

var dialog;

http://livedocs.dojotoolkit.org/dijit/Dialog
http://livedocs.dojotoolkit.org/dijit/Dialog
http://livedocs.dojotoolkit.org/dijit/Dialog
http://livedocs.dojotoolkit.org/dijit/Dialog

function displayFrame(frame) {
 if (!dialog) dialog = new dijit.Dialog();
 dialog.setContent(frame);
 dialog.show();
}

And here is the handleMessage() method, which evaluates the returned JSON
representation of a bug for the URL and title:

function handleMessage(message) {
 var json = message.substring(message.indexOf("{"),
message.length);
 var results = eval("(" + json + ")");
 var linkname = results["oslc:results"][0]["oslc:label"];
 var linkurl = results["oslc:results"][0]["rdf:resource"];
 addLink(linkname, linkurl);
}

Finally, we add a link to the page with the addLink() method:

function addLink(linkname, linkurl) {
 dojo.xhrPost({
 url: "http://"+hostname+":8181/ninacrm/data",
 headers: { "Content-Type": "application/x-www-form-
urlencoded" },
 postData: "linkname=" + linkname + "&linkurl=" + linkurl,
 load: function(data) {
 status("Added link!");
 var li = document.createElement("li");
 li.innerHTML = "<a href='" + linkurl + "'
onclick='showPreview()'>" + linkname + "";
 var ul = dojo.byId("linkList").appendChild(li);
 addPreviewMouseOverHandlers();
 },
 error: function (error) {
 status("Error adding link!");
 }
 });
}

The addLink() method sends the title and URL of the bug to the /ninacrm/data
service, which adds the information to the database. If successful, we add the link to the
<ul id="linkList"> element under the Related Links header.

Throughout the process, we update a status message with the status() method:

function status(msg) {

 document.getElementById("status").innerHTML = msg;
}

Results
With all these in place, you should now be able to add links to our incident pages with
delegated OSLC dialogs.

Here’s the dialog for selection:

Sample delegated dialog for selecting bugs on the incident page

You can search for bugs directly:

Using the delegated dialog for selection to search for water

You can also create new bugs right from the page:

Either way, the new or selected bug appears on the page (complete with the ability to
see a UI preview of the bug):

Bug #3266 added to the incident page

At this point, we’ve completed our first milestone goals: the CRM system now uses
links, OSLC UI Preview, and OSLC delegated dialogs to make it faster for support reps
to find and create bugs.

Implementing a “Customers to notify”
page
In this section, we’ll explore how the ability to parse OSLC resources can help us add
the ability to automatically notify customers of bugs that have changed.

Our plan for automating customer notifications is pretty straight forward.

When our support reps create Incidents, customers are allowed to request notification
for critical bugs, and this is recorded in the CRM system. To automatically send
notifications to our customers when there are changes to bugs, we must do the
following:

1. Query the CRM system to get all Notification Requests; each specifies the URL of a
bug, date of last update and the customer’s notification email address.

2. For each Notification Request, check the associated bug to see if it has been
updated, using HTTP Conditional GET to avoid retrieving and parsing bugs that
have not been updated.

3. If a bug has been updated, then format a nice notification email and include a
summary of the bug.

We can write a program that can run as a scheduled task on a Build Automation system
or just plain old UNIX cron.

In this tutorial we won’t try to explain the whole program. We’ll focus on the OSLC-
specific parts, which are retrieving an OSLC resource via HTTP GET and how to parse
an OSLC resource to get property values like title, status, modification date and others.

Fetching an OSLC resource with HTTP GET
First, as a prerequisite, we have to set up our Notification program to run on a schedule
and provide it with whatever network addresses, credentials and other information
necessary to connect to the CRM system, Bugzilla, and the Email system. We won’t
cover these details here.

Next, we need to write the code necessary to query the CRM system and get all
Notification Requests and code that loops through the list. Then, For each bug, we
wants to check and see if the bug has been updated since the last time the program
ran. If the bug has been updated, then we want to fetch the bug in RDF/XML form and
parse out the information need to form a notification email to the interested customer.

Exploring the RDF/XML form of a Bugzilla Bug

For this section, start the sample Bugzilla Adapter application. We assume it’s running
at localhost:8080.

With the adapter running, navigate to the following URL in a browser:http://localhost:
8080/OSLC4JBugzilla/services/1/changeRequests/17

(You might have to substitute different ID numbers for the product and bug)

In a browser, you’ll be forwarded to the HTML page in Bugzilla for the bug. That’s nice
for us, but not so useful for a program that must parse the data. How can we request an
RDF/XML representation of a bug?

OSLC providers are required to provide an RDF/XML representation of resources;
however, the normal rules of HTTP and Content Negotiation apply. If you want RDF/
XML then you should ask for it. Specifically, use Accept headers.

If you send the same request with an Accept header with the content application/
rdf+xml, you should receive RDF/XML back from the adapter.

You can explore this further with the Poster plugin and the Bugzilla adapter where we
implemented OSLC representations of Bugzilla bugs.

Here’s a sample Bugzilla bug represented as an RDF/XML BugzillaChangeRequest
resource:

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:oslc_data="http://open-services.net/ns/
servicemanagement/1.0/"
 xmlns:oslc_rm="http://open-services.net/ns/rm#"
 xmlns:oslc="http://open-services.net/ns/core#"
 xmlns:bugz="http://www.bugzilla.org/rdf#"
 xmlns:oslc_scm="http://open-services.net/ns/scm#"
 xmlns:foaf="http://xmlns.com/foaf/0.1/"
 xmlns:oslc_qm="http://open-services.net/ns/qm#"
 xmlns:dcterms="http://purl.org/dc/terms/"
 xmlns:oslc_cm="http://open-services.net/ns/cm#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" >
 <rdf:Description rdf:about="http://localhost:8080/
OSLC4JBugzilla/services/1/changeRequests/17">
 <dcterms:contributor rdf:resource="http://localhost:8080/
OSLC4JBugzilla/person?mbox=tara%40bluemartini.com"/>
 <bugz:operatingSystem>Windows NT</bugz:operatingSystem>

http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/17
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/17
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/17
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/17
http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-oslc-representations/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-oslc-representations/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-oslc-representations/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-oslc-representations/
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://open-services.net/ns/servicemanagement/1.0/
http://open-services.net/ns/servicemanagement/1.0/
http://open-services.net/ns/servicemanagement/1.0/
http://open-services.net/ns/servicemanagement/1.0/
http://open-services.net/ns/rm#
http://open-services.net/ns/rm#
http://open-services.net/ns/core#
http://open-services.net/ns/core#
http://www.bugzilla.org/rdf#
http://www.bugzilla.org/rdf#
http://open-services.net/ns/scm#
http://open-services.net/ns/scm#
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/
http://open-services.net/ns/qm#
http://open-services.net/ns/qm#
http://purl.org/dc/terms/
http://purl.org/dc/terms/
http://open-services.net/ns/cm#
http://open-services.net/ns/cm#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2000/01/rdf-schema#
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/17
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/17
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/17
http://localhost:8080/OSLC4JBugzilla/services/1/changeRequests/17
http://localhost:8080/OSLC4JBugzilla/person?mbox=tara%40bluemartini.com
http://localhost:8080/OSLC4JBugzilla/person?mbox=tara%40bluemartini.com
http://localhost:8080/OSLC4JBugzilla/person?mbox=tara%40bluemartini.com
http://localhost:8080/OSLC4JBugzilla/person?mbox=tara%40bluemartini.com

 <rdf:type rdf:resource="http://open-services.net/ns/
cm#ChangeRequest"/>
 <oslc_cm:status>RESOLVED</oslc_cm:status>
 <oslc:serviceProvider rdf:resource="http://localhost:8080/
OSLC4JBugzilla/services/serviceProviders/1"/>
 <bugz:platform>PC</bugz:platform>
 <bugz:version>1.0</bugz:version>
 <dcterms:created>2000-06-29T22:07:00.000-04:00</
dcterms:created>
 <dcterms:title rdf:datatype="http://www.w3.org/1999/02/22-
rdf-syntax-ns#XMLLiteral">Albright Overseas</dcterms:title>
 <bugz:component>PoliticalBackStabbing</bugz:component>
 <oslc_cm:severity>Unclassified</oslc_cm:severity>
 <dcterms:modified>2009-11-14T14:36:54.000-05:00</
dcterms:modified>
 <bugz:priority>P4</bugz:priority>
 <dcterms:identifier>17</dcterms:identifier>
 </rdf:Description>
 <rdf:Description rdf:about="http://localhost:8080/
OSLC4JBugzilla/person?mbox=tara%40bluemartini.com">
 <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
 </rdf:Description>
</rdf:RDF>

Note the variety of namespace definitions near the top of the document that define short
prefix names for properties (e.g.,dcterms).

Inside the <rdf:RDF> root element, there is an <rdf:Description> element with an
attribute of rdf:about that is the URI of the Change Request. The <rdf:type>
element indicates that this is an OSLC CM request. Each XML element represents a
property value of the Change Request.

OSLC resources use Dublin Core defined properties, like title, description, and
id. They also use OSLC defined properties like status, closed, and inprogress.
You can find a listing of the different types of properties allowed and required in the
OSLC-CM specification. There are also Bugzilla specific properties like component and
priority.

You can learn more about how our OSLC Bugzilla Adapter generates these
representations here.

Parsing an OSLC resource
Note: The following discusses using an RDF/XML parser. If you are writing Java, you
could also use – in fact, we recommend using – OSLC4J to convert RDF/XML

http://open-services.net/ns/cm#ChangeRequest
http://open-services.net/ns/cm#ChangeRequest
http://open-services.net/ns/cm#ChangeRequest
http://open-services.net/ns/cm#ChangeRequest
http://localhost:8080/OSLC4JBugzilla/services/serviceProviders/1
http://localhost:8080/OSLC4JBugzilla/services/serviceProviders/1
http://localhost:8080/OSLC4JBugzilla/services/serviceProviders/1
http://localhost:8080/OSLC4JBugzilla/services/serviceProviders/1
http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral
http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral
http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral
http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral
http://localhost:8080/OSLC4JBugzilla/person?mbox=tara%40bluemartini.com
http://localhost:8080/OSLC4JBugzilla/person?mbox=tara%40bluemartini.com
http://localhost:8080/OSLC4JBugzilla/person?mbox=tara%40bluemartini.com
http://localhost:8080/OSLC4JBugzilla/person?mbox=tara%40bluemartini.com
http://xmlns.com/foaf/0.1/Person
http://xmlns.com/foaf/0.1/Person
http://open-services.net/bin/view/Main/CmSpecificationV2
http://open-services.net/bin/view/Main/CmSpecificationV2
http://open-services.rtp.raleigh.ibm.com/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-oslc-representations/
http://open-services.rtp.raleigh.ibm.com/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-oslc-representations/
http://wiki.eclipse.org/Lyo/LyoOSLC4J
http://wiki.eclipse.org/Lyo/LyoOSLC4J

representations into Java objects, which will most likely be easier to work with. Consider
the following to be guidance if you choose to approach this another way.

If you’ve parsed XML before, then the XML above probably does not look too
challenging; however, RDF/XML is very flexible and XML parsing tools are not always
the best way to process it. Fortunately, there are plenty of commercial and open source
RDF parsing tools.

Why you need an RDF parser

You can see the flexibility of RDF/XML in action if you compare the RDF/XML for the
Change Request above to theRDF/XML sample Change Request in the OSLC-CM
specification.

RDF/XML allows RDF property values to be serialized in a variety of ways. For
example, property values about a Change Request could be nested inside an
<oslc_cm:ChangeRequest> element, as you see in the OSLC-CM samples, where
the element itself indicates the Resource Type. Or they could be nested inside an
<rdf:Description> element, as you see above, and the type indicated by an
<rdf:type> value. Both are valid forms of RDF/XML and allowed by OSLC, so you will
have to accept both forms in any parser code that you write. That’s only one example.

Another reason to use an RDF parser is that RDF/XML is only one way to serialize RDF.
Right now RDF/XML is the popular format and the one required by OSLC, but there are
other formats including Turtle, N3 and soon an official RDF serialization for JSON. By
using a full-featured RDF parser like Jena, which we discuss below, you can read and
write any format with the same code.

Finding an RDF/XML parser

Instead of trying to write your own RDF/XML parser using XML tools, a better approach
is to use an existing RDF/XML parser. There is one for every programming language
and most are free and/or open source software. Below is a list of the more popular open
source RDF tool-kits, the platform and licensing used by each.

• http://jena.apache.org - Jena (Java) License: ASL2
• http://www.openrdf.org/ - OpenRDF / Sesame (Java) License: ASL2 and BSD-like
• http://rdf.rubyforge.org/ - RDF.rb (Ruby) License: Public Domain
• http://librdf.org/bindings/ - Redland (C, Perl, PHP, Python and Ruby) License: ASL2
• http://razor.occams.info/code/semweb/ - SemWeb.NET (C# / .Net) License: GPL2

All of the above libraries support RDF parsing and serialization, some form of triple-
store RDF storage, and SPARQL query… more than you’ll need for a typical OSLC
implementation.

For our implementation, we’ll be using Jena.

http://open-services.rtp.raleigh.ibm.com/bin/view/Main/CmSpecificationV2Samples#Request_with_no_parameters_as_ap
http://open-services.rtp.raleigh.ibm.com/bin/view/Main/CmSpecificationV2Samples#Request_with_no_parameters_as_ap
http://open-services.rtp.raleigh.ibm.com/bin/view/Main/CmSpecificationV2
http://open-services.rtp.raleigh.ibm.com/bin/view/Main/CmSpecificationV2
http://open-services.rtp.raleigh.ibm.com/bin/view/Main/CmSpecificationV2
http://open-services.rtp.raleigh.ibm.com/bin/view/Main/CmSpecificationV2
http://jena.apache.org/
http://jena.apache.org/
http://www.openrdf.org/
http://www.openrdf.org/
http://rdf.rubyforge.org/
http://rdf.rubyforge.org/
http://librdf.org/bindings/
http://librdf.org/bindings/
http://razor.occams.info/code/semweb/
http://razor.occams.info/code/semweb/

How to use Jena to parse RDF/XML resource

Jena is an open source Java library that offers a wide variety of RDF tools including a
parser that can handle RDF/XML and other RDF serializations. Using Jena is straight-
forward and should be easy for a Java developer.

Before you start coding, you must get the Jena JAR and all of its dependency JARs into
your development classpath. You can do this by downloading the Jena ZIP file which
contains all of the necessary JARs, and add them to your IDE project. Or, if you are
using Maven, then a dependency on groupId com.hp.hpl.jena and artifactId jena to
your Maven POM file.

Let’s attempt to GET an OSLC Change Request via HTTP, but this time we will do it in
Java. When we get the results, we will parse them with Jena and pull out the properties
that Nina needs: the OSLC-CM fixed value and the Dublin Core Terms modified
date value.

Note that the following is not a complete Java class:

import java.net.HttpURLConnection; // (1)
import java.net.URL;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.rdf.model.ModelFactory;
import com.hp.hpl.jena.rdf.model.Property;
import com.hp.hpl.jena.rdf.model.Resource;
import com.hp.hpl.jena.rdf.model.Statement;

// class declaration and other things omitted

String resourceURI = "http://localhost:8080/OSLC4JBugzilla/
services/1/ChangeRequests/1";
URL url = new URL(resourceURI); // (2)
HttpURLConnection conn =
(HttpURLConnection)url.openConnection();
conn.setRequestProperty("Accept", "application/rdf+xml"); //
(3)

Model model = ModelFactory.createDefaultModel();
model.read(conn.getInputStream(), resourceURI); // (4)

Resource resource = model.getResource(resourceURI); // (5)

// (6)
Property fixedProp = model.getProperty("http://open-
services.net/ns/cm#fixed");

http://jena.sourceforge.net/downloads.html
http://jena.sourceforge.net/downloads.html
http://localhost:8080/OSLC4JBugzilla/services/1/ChangeRequests/1
http://localhost:8080/OSLC4JBugzilla/services/1/ChangeRequests/1
http://localhost:8080/OSLC4JBugzilla/services/1/ChangeRequests/1
http://localhost:8080/OSLC4JBugzilla/services/1/ChangeRequests/1
http://open-services.net/ns/cm#fixed
http://open-services.net/ns/cm#fixed
http://open-services.net/ns/cm#fixed
http://open-services.net/ns/cm#fixed

Statement fixed = model.getProperty(resource, fixedProp); // (7)
System.err.println("Fixed = " + fixed.getString()); // (8)

// (9)
Property modifiedProp = model.getProperty("http://purl.org/dc/
terms/modified");
Statement modified = model.getProperty(resource, modifiedProp);
System.err.println("Modified = " + modified.getString());

Here’s what it does:

1. Import the Java classes required for the example. Again, this is an incomplete Java
class, so we’ve left out the class declaration, method declaration, and other bits;

2. Build a URL to a specific change request (hard-coded in the example);
3. Open a connection to that URL with an Accept header of application/rdf+xml;
4. Create a new Jena model and have it read the response. We pass in the

resourceURI so Jena will know how to resolve relative links;
5. We use the Jena model to get the Resource for the the Change Request URI
6. We use the Jena model to get the Property object for the OSLC-CM fixed property

by passing in the URL for the fixed property;
7. We get the value for the fixed property;
8. And output that value to stdout;
9. We repeat the same process to get the Dublin Core modified property.

With the ability to parse OSLC Change Request resources in RDF/XML form, you can
fairly easily figure out the remainder of the application that will automatically notify
customers if there have been any updates to critical bugs.

The power of OSLC representations
The real power of OSLC on display here is that although we’ve written this code with
our OSLC-CM Adapter for Bugzilla in mind, it will work equally well for any other
application that provides data according to the OSLC-CM specification. Because OSLC
Providers should all expose the same types of data in the same standard formats, you
can build integrations for the OSLC standards and specifications that should work with
any compatible software. It’s a different way of thinking about integrations that should
help you make powerful, flexible, and future-proof ways to connect software. Cool stuff.

Next, now that we have a simple understanding of Jena, we’ll use it to help us
automatically create Bugzilla bugs – no human involvement required.

http://purl.org/dc/terms/modified
http://purl.org/dc/terms/modified
http://purl.org/dc/terms/modified
http://purl.org/dc/terms/modified
http://open-services.net/ns/cm#fixed
http://open-services.net/ns/cm#fixed

Implementing automated bug creation
In this section we’ll be building the foundations for a Java service that can automatically
create a new bug in Bugzilla whenever a build or a test (from another program) fails.
Here’s roughly how the entire system would work:

1. The build scripts (or testing programs) will be configured to report bugs against a
product in Bugzilla; with the ID for the product, these applications can retrieve the
OSLC Service Provider that represents that product.

2. The build scripts will retrieve the Service Provider for the product and then parse it to
find the Creation Factory URL, or the URL to which you can POST to create new
bugs

3. The scripts will create an RDF/XML representation of a new bug to be created; if
there is an OSLC Resource Shape, they will use that to determine any required
fields

4. The script will send the RDF/XML representation to the Creation Factory URL using
HTTP POST; the adapter will then interact with Bugzilla to create a new bug.

As with the last section, we won’t create an entire service; instead, we’ll focus on the
OSLC-specific parts, like parsing RDF resources and POSTing to an OSLC Creation
Factory.

Using a Service Provider Catalog to find a Service
Provider.
For our OSLC-CM Bugzilla Adapter (or any OSLC provider), the starting point for
exploring OSLC capabilities is theService Provider Catalog document.

You can read more about implementing Service Provider Catalogs for our Bugzilla
Adapter here. In short, we represent every Bugzilla Product as a Service Provider
resource, and we collect all of those Service Providers in one Service Provider Catalog.

The general principle is that clients should only need to know the URL for the Catalog;
from the Catalog, clients can navigate to the other OSLC services. In other words,
clients should not have to hard-code URLs to individual OSLC services.

Here’s a sample Service Provider Catalog document. You can see something similar if
you’re running the Bugzilla Adapter and run an HTTP GET request to http://
localhost:8080/OSLC4JBugzilla/services/catalog/singletonwith an
Accept header of application/rdf+xml:

<?xml version="1.0"?>
<rdf:RDF xmlns:oslc="http://open-services.net/ns/core#"
 xmlns:dcterms="http://purl.org/dc/terms/"

http://open-services.net/resources/tutorials/oslc-primer/serviceprovidercatalog/
http://open-services.net/resources/tutorials/oslc-primer/serviceprovidercatalog/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-service-providers-and-catalogs/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-service-providers-and-catalogs/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-service-providers-and-catalogs/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-service-providers-and-catalogs/
http://open-services.net/resources/tutorials/oslc-primer/serviceprovider/
http://open-services.net/resources/tutorials/oslc-primer/serviceprovider/
http://open-services.net/resources/tutorials/oslc-primer/serviceprovider/
http://open-services.net/resources/tutorials/oslc-primer/serviceprovider/
http://localhost:8080/OSLC4JBugzilla/services/catalog/singletonwith
http://localhost:8080/OSLC4JBugzilla/services/catalog/singletonwith
http://localhost:8080/OSLC4JBugzilla/services/catalog/singletonwith
http://localhost:8080/OSLC4JBugzilla/services/catalog/singletonwith
http://open-services.net/ns/core#
http://open-services.net/ns/core#
http://purl.org/dc/terms/
http://purl.org/dc/terms/

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <oslc:ServiceProviderCatalog rdf:about="http://localhost:8080/
OSLC4JBugzilla/catalog">
 <dcterms:title>OSLC-CM Adapter/Bugzilla Service Provider
Catalog</dcterms:title>
 <dcterms:description>
 Enables navigation to Service Provider for each Product
 against which bugs may be reported.
 </dcterms:description>
 <oslc:domain rdf:resource="http://open-services.net/ns/cm#"/
>

 <oslc:serviceProvider>
 <oslc:ServiceProvider rdf:about=
 "http://localhost:8080/OSLC4JBugzilla/services/
serviceProviders/2">
 <dcterms:title>FoodReplicator</dcterms:title>
 </oslc:ServiceProvider>
 </oslc:serviceProvider>

 <oslc:serviceProvider>
 <oslc:ServiceProvider rdf:about=
 "http://localhost:8080/OSLC4JBugzilla/services/
serviceProviders/19">
 <dcterms:title>Sam's Widget</dcterms:title>
 </oslc:ServiceProvider>
 </oslc:serviceProvider>

 </oslc:ServiceProviderCatalog>
</rdf:RDF>

The above example catalog has two oslc:serviceProvider values (i.e. http://open-
services.net/ns/core#ServiceProvider). The URL of each provider is specified in the
rdf:about attribute, and its title is specified as a dcterms:title property value. For
example, the OSLC Service Provider resource for the FoodReplicator product is located
at http://localhost:8080/OSLC4JBugzilla/services/serviceProviders/
2.

As we discussed in the previous section, you should use an RDF parser like Jena to
parse these documents programmatically.

Using a Service Provider to find a Creation Factory
Once we’ve navigated from a Catalog to a Service Provider resource, here’s a sample
of what you might see (as an RDF/XML document):

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://localhost:8080/OSLC4JBugzilla/catalog
http://localhost:8080/OSLC4JBugzilla/catalog
http://localhost:8080/OSLC4JBugzilla/catalog
http://localhost:8080/OSLC4JBugzilla/catalog
http://open-services.net/ns/cm#
http://open-services.net/ns/cm#
http://localhost:8080/OSLC4JBugzilla/services/serviceProviders/2
http://localhost:8080/OSLC4JBugzilla/services/serviceProviders/2
http://localhost:8080/OSLC4JBugzilla/services/serviceProviders/2
http://localhost:8080/OSLC4JBugzilla/services/serviceProviders/2
http://localhost:8080/OSLC4JBugzilla/services/serviceProviders/19
http://localhost:8080/OSLC4JBugzilla/services/serviceProviders/19
http://localhost:8080/OSLC4JBugzilla/services/serviceProviders/19
http://localhost:8080/OSLC4JBugzilla/services/serviceProviders/19
http://open-services.net/ns/core#ServiceProvider
http://open-services.net/ns/core#ServiceProvider
http://open-services.net/ns/core#ServiceProvider
http://open-services.net/ns/core#ServiceProvider
http://localhost:8080/OSLC4JBugzilla/services/serviceProviders/2
http://localhost:8080/OSLC4JBugzilla/services/serviceProviders/2
http://localhost:8080/OSLC4JBugzilla/services/serviceProviders/2
http://localhost:8080/OSLC4JBugzilla/services/serviceProviders/2

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dcterms="http://purl.org/dc/terms/"
 xmlns:oslc="http://open-services.net/ns/core#">
 <oslc:ServiceProvider rdf:about="http://localhost:8080/
OSLC4JBugzilla/services/serviceProviders/2">
 <dcterms:title>OSLC-CM Adapter/Bugzilla Service Provider:
 Product FakePortal(2)</dcterms:title>
 <dcterms:description>
 Enables navigation to OSLC-CM Resource Creator and
Selector Dialogs
 </dcterms:description>
 <oslc:service> <!-- (1) -->
 <oslc:Service>
 <oslc:domain rdf:resource="http://open-services.net/ns/
cm#"/>

 <!-- selection and creation dialog information deleted
-->

 <oslc:creationFactory> <!-- (2) -->
 <oslc:CreationFactory>
 <dcterms:title>Change Request Creation Factory</
dcterms:title>
 <oslc:resourceType rdf:resource= <!-- (3) -->
 "http://open-services.net/ns/cm#ChangeRequest"/>
 <oslc:label>CreationFactory</oslc:label>
 <oslc:creation rdf:resource= <!-- (4) -->
 "http://localhost:8080/OSLC4JBugzilla/services/2/
changeRequests"/>
 <oslc:resourceShape rdf:resource= <!-- (5) -->
 "http://localhost:8080/OSLC4JBugzilla/services/
resourceShapes/changeRequest"/>
 <oslc:usage rdf:resource= <!-- (6) -->
 "http://open-services.net/ns/core#default"/>
 </oslc:CreationFactory>
 </oslc:creationFactory>
 </oslc:Service>
 </oslc:service>
 </oslc:ServiceProvider>
</rdf:RDF>

You can read more about implementing Service Providers and implementing creation
factories for our Bugzilla adapter.

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://purl.org/dc/terms/
http://purl.org/dc/terms/
http://open-services.net/ns/core#
http://open-services.net/ns/core#
http://localhost:8080/OSLC4JBugzilla/services/serviceProviders/2
http://localhost:8080/OSLC4JBugzilla/services/serviceProviders/2
http://localhost:8080/OSLC4JBugzilla/services/serviceProviders/2
http://localhost:8080/OSLC4JBugzilla/services/serviceProviders/2
http://open-services.net/ns/cm#
http://open-services.net/ns/cm#
http://open-services.net/ns/cm#
http://open-services.net/ns/cm#
http://open-services.net/ns/cm#ChangeRequest
http://open-services.net/ns/cm#ChangeRequest
http://localhost:8080/OSLC4JBugzilla/services/2/changeRequests
http://localhost:8080/OSLC4JBugzilla/services/2/changeRequests
http://localhost:8080/OSLC4JBugzilla/services/2/changeRequests
http://localhost:8080/OSLC4JBugzilla/services/2/changeRequests
http://localhost:8080/OSLC4JBugzilla/services/resourceShapes/changeRequest
http://localhost:8080/OSLC4JBugzilla/services/resourceShapes/changeRequest
http://localhost:8080/OSLC4JBugzilla/services/resourceShapes/changeRequest
http://localhost:8080/OSLC4JBugzilla/services/resourceShapes/changeRequest
http://open-services.net/ns/core#default
http://open-services.net/ns/core#default
http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-service-providers-and-catalogs/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-service-providers-and-catalogs/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-a-creation-factory/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-a-creation-factory/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-a-creation-factory/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-a-creation-factory/

Of most interest to our team developing a way to automatically create bugs are the
contents of the <oslc:service>element ((1)). The Service has an
oslc:creationFactory property ((2)) with a value of oslc:CreationFactory.
The creation factory has values that indicate it is for creating Change Requests ((3)),
the URI for posting new Change Requests ((4)), and the URI of the Resource Shape
((5)) that lists the required fields for bug creation. The usage value ((5)) indicates that
this is the default Creation Factory to use.

With this information, the build and testing scripts can parse the Service Provider
document and discover the Creation Factory URL, which is the URL for posting new
bugs.

First, though, let’s explore the Resource Shape document.

Using a Resource Shape to determine required
properties
It’s not enough to just know the URL to POST bugs to; the testing scripts must also
create a properly formatted OSLC-CM Change Request representation with the
required property values and property values that are valid. Each Product defined in
Bugzilla might have different required fields, custom fields and different allowed values.

It’s entirely possible to confer with the Bugzilla system’s administration and figure out
the required and allowed values, or you could use the OSLC OSLC Creation Factory’s
Resource Shape document, which provides the same information.

An example Resource Shape document in RDF/XML form is below (you can see the
Resource Shape from our Bugzilla Adapter at http://localhost:8080/OSLC4JBugzilla/
services/resourceShapes/changeRequest):

<?xml version="1.0" encoding="UTF-8"?>
<oslc:Shape xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-
ns#"
 xmlns:dc="http://purl.org/dc/terms/"
 xmlns:oslc="http://open-services.net/xmlns/oslc-core#"
 xmlns:oslc_cm="http://open-services.net/xmlns/cm/1.0/"
 rdf:about="http://localhost:8080/OSLC4JBugzilla/shape?
productId=2">

 <dc:title>This is the resource shape for a new Bugzilla Bug</
dc:title>

 <oslc:property>
 <oslc:Property>
 <oslc:name>title</oslc:name>

http://open-services.net/resources/tutorials/oslc-primer/resourceshapes/
http://open-services.net/resources/tutorials/oslc-primer/resourceshapes/
http://open-services.net/resources/tutorials/oslc-primer/resourceshapes/
http://open-services.net/resources/tutorials/oslc-primer/resourceshapes/
http://localhost:8080/OSLC4JBugzilla/services/resourceShapes/changeRequest
http://localhost:8080/OSLC4JBugzilla/services/resourceShapes/changeRequest
http://localhost:8080/OSLC4JBugzilla/services/resourceShapes/changeRequest
http://localhost:8080/OSLC4JBugzilla/services/resourceShapes/changeRequest
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://purl.org/dc/terms/
http://purl.org/dc/terms/
http://open-services.net/xmlns/oslc-core#
http://open-services.net/xmlns/oslc-core#
http://open-services.net/xmlns/cm/1.0/
http://open-services.net/xmlns/cm/1.0/
http://localhost:8080/OSLC4JBugzilla/shape?productId=2
http://localhost:8080/OSLC4JBugzilla/shape?productId=2
http://localhost:8080/OSLC4JBugzilla/shape?productId=2
http://localhost:8080/OSLC4JBugzilla/shape?productId=2

 <oslc:propertyDefinition rdf:resource=
 "http://purl.org/dc/terms/title" />
 <oslc:valueType rdf:resource=
 "http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral" />
 <oslc:occurs rdf:resource=
 "http://open-service.net/ns/core#Exactly-one" />
 </oslc:Property>
 </oslc:property>

 <oslc:property>
 <oslc:Property>
 <oslc:name>component</oslc:name>
 <oslc:propertyDefinition rdf:resource=
 "http://www.bugzilla.org/rdf#component" />
 <oslc:valueType rdf:resource=
 "http://www.w3.org/2001/XMLSchema#string" />
 <oslc:occurs rdf:resource=
 "http://open-service.net/ns/core#Exactly-one" />
 <oslc:allowedValue>Installer</oslc:allowedValue>
 <oslc:allowedValue>User Interface</oslc:allowedValue>
 </oslc:Property>
 </oslc:property>

 <!-- other properties omitted -->

</oslc:Shape>

Inside the root oslc:Shape element is the dc:title of the shape, which tells us the
shape’s purpose (1). Next there is a series of property values for the oslc:property
property. Each one describes the requirements for the property at creation time. In the
listing, we omit all but two of the property values: dc:title and bugz:component.

Each property has a name (oslc:name), a link to the property definition
(oslc:propertyDefinition), the acceptable type of value (oslc:valueType) and
the cardinality (oslc:occurs), and allowed values (oslc:allowedValue). In our
example above, the component property accepts String values; the occurs value of
Exactly-one indicates that it is required; and the allowed values are either
Installer or User Interface.

With this information from the Resource Shape document, we can now create and post
new bugs.

http://purl.org/dc/terms/title
http://purl.org/dc/terms/title
http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral
http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral
http://open-service.net/ns/core#Exactly-one
http://open-service.net/ns/core#Exactly-one
http://www.bugzilla.org/rdf#component
http://www.bugzilla.org/rdf#component
http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2001/XMLSchema#string
http://open-service.net/ns/core#Exactly-one
http://open-service.net/ns/core#Exactly-one

Forming an RDF/XML representation of a Bugzilla bug
Note: The following discusses using an RDF/XML parser. If you are writing Java, you
could also use – in fact, we recommend using – OSLC4J to handle conversions
between RDF/XML and plain old Java objects. Consider the following to be guidance if
you choose to approach this another way.

Although you could generate RDF/XML through a variety of techniques, we recommend
using a dedicated RDF toolkit like Jena.

We’ll create a very simple method below: it accepts strings of various property values
and returns an RDF/XML representation of a new bug.

To follow along, open the file NewDefect.java in the
org.eclipse.lyo.samples.ninacrm.examples package and search for the formNewBug()
method.

First, OSLC-CM requires Change Requests to have an RDF Type and a title:

Property bugType =
 new PropertyImpl("http://open-services.net/ns/
cm#ChangeRequest");

Property titleProp =
 new PropertyImpl("http://purl.org/dc/terms/title");

Next, we know from the Resource Shape document that new bugs must have property
values for the Bugzilla bug properties product, version, component, platform and
operating system. So we set up Jena property objects for each of those:

Property versionProp =
 new PropertyImpl("http://www.bugzilla.org/rdf#version");

Property componentProp =
 new PropertyImpl("http://www.bugzilla.org/rdf#component");

Property platformProp =
 new PropertyImpl("http://www.bugzilla.org/rdf#platform");

Property opsysProp =
 new PropertyImpl("http://www.bugzilla.org/rdf#opsys");

We are hard-coding required Bugzilla properties here. It would be better – more flexible
and future-proof – to programmatically locate and parse a Resource Shape document to
determine the required properties; for simplicity's sake, we do not do so here. We leave
that as an exercise for the reader.

http://wiki.eclipse.org/Lyo/LyoOSLC4J
http://wiki.eclipse.org/Lyo/LyoOSLC4J
http://jena.apache.org/
http://jena.apache.org/
http://open-services.net/ns/cm#ChangeRequest
http://open-services.net/ns/cm#ChangeRequest
http://open-services.net/ns/cm#ChangeRequest
http://open-services.net/ns/cm#ChangeRequest
http://purl.org/dc/terms/title
http://purl.org/dc/terms/title
http://www.bugzilla.org/rdf#version
http://www.bugzilla.org/rdf#version
http://www.bugzilla.org/rdf#component
http://www.bugzilla.org/rdf#component
http://www.bugzilla.org/rdf#platform
http://www.bugzilla.org/rdf#platform
http://www.bugzilla.org/rdf#opsys
http://www.bugzilla.org/rdf#opsys

Note that we did not set the Bugzilla Product: the product can be determined by the
choice of service that you use to post the new bug. (In other words, every Bugzilla
product will have its own OSLC Creation Factory.)

Next, we set up a Jena Model object and adds namespace prefixes. These are not
strictly necessary, but they will make the RDF/XML a little more readable and make it
look more like the examples in the OSLC specifications, which is useful.

Model model = ModelFactory.createDefaultModel();
model.setNsPrefix("bugz", "http://www.bugzilla.org/rdf#");
model.setNsPrefix("dcterms", "http://purl.org/dc/terms/");
model.setNsPrefix("oslc_cm", "http://open-services.net/ns/cm#");

Once the Model is set up, we create a Resource object using a base URI that is the
empty string. We won’t know the URI of the new bug until the OSLC-CM provider has
created it and tells us the new URI via the HTTP Location header.

com.hp.hpl.jena.rdf.model.Resource resource =
model.createResource("");

Once we have a Resource, we are ready to add property values for each of the required
properties:

resource.addProperty(RDF.type, bugType);
resource.addLiteral(titleProp, title);
resource.addLiteral(versionProp, version);
resource.addLiteral(componentProp, component);
resource.addLiteral(platformProp, platform);
resource.addLiteral(opsysProp, opsys);

Finally, we write out the RDF model in RDF/XML format and return it in string form:

StringWriter sw = new StringWriter();
RDFWriter writer = model.getWriter();
writer.write(model, sw, "/");
sw.flush();
return sw.toString();

Using HTTP to POST a new bug
With the ability to build RDF/XML representations of a bug in place, we can write a
simple example that posts an RDF/XML representation of a new bug to an OSLC-CM
Provider:

public static void postNewBug(
 String creationURL,

http://www.bugzilla.org/rdf#
http://www.bugzilla.org/rdf#
http://purl.org/dc/terms/
http://purl.org/dc/terms/
http://open-services.net/ns/cm#
http://open-services.net/ns/cm#

 String title,
 String version,
 String component,
 String platform,
 String opsys) {

 String bug = formNewBug(title, version, component plaform,
opsys); // (1)

 try {
 URL createURL = new URL(creationURL); // (2)

 HttpURLConnection conn =
(HttpURLConnection)createURL.openConnection();
 conn.setRequestMethod("POST"); // (3)
 conn.setDoOutput(true);
 conn.setRequestProperty("Content-Type", "application/rdf
+xml"); // (4)

 BufferedOutputStream out = new
BufferedOutputStream(conn.getOutputStream());
 out.write(bug.getBytes("UTF-8")); // (5)
 out.close();

 BufferedReader in = new BufferedReader(// (6)
 new InputStreamReader(conn.getInputStream()));
 String s;
 while ((s = in.readLine()) != null) {
 System.out.println(s);
 }
 in.close();

 int rc = conn.getResponseCode(); // (7)
 System.out.println("Return status: " + rc);
 System.out.println("Location: " +
conn.getHeaderField("Location")); // (8)
 }
 catch (IOException e) {
 e.printStackTrace();
 }
}

The above method accepts as arguments the URL for the creation factory and the
required attributes.

First, we use the formNewBug() method (discussed above) to build the RDF/XML
representation of the new bug from the passed property values ((1)).

Next, we create a URL object with the URL of the target Change Request Creation
Factory ((2)) and use it to open an HTTP connection. We configure that connection for
HTTP POST ((3)) and set the HTTP Content-Type to inform the server that we are
sending RDF/XML data ((4)).

Finally, we write out the bug to the server ((5)). To confirm that the POST worked, we
write out the results ((6)) and the response code ((7)) and the Location header ((8)). If
all went well, the response code should be 201, which means Created, and the
Location will be the URI of the newly created bug.

Try it out!: If you'd like to more details or want to try to post a bug using RDF/XML, see
our walkthrough of implementing a Creation Factory for our Bugzilla adapter.

http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-a-creation-factory/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-a-creation-factory/

