
Open Services for Lifecycle Collaboration
White Paper
May 2009

The Case for Open Services
John Wiegand, Distinguished Engineer, IBM Rational Software

The Case for Open Services
Page 2

May 2009

Contents
The Problem..............................2
Characteristics of a solution ...3
Practical steps3
Enabling possibilities7
What IBM is doing7
What you can do.......................7
References8
Acknowledgments....................8

The Problem
Teams and organizations concerned with software delivery know that they

can be much more effective when the tools that they can be used in

combination. They want traceability across resources and accountability

across processes, without burdensome manual overhead. However, the

tools landscape itself, having emerged organically from point tools aimed at

solving specific narrow needs in the software delivery lifecycle, can present

challenges for these organizations.

Let's consider a typical organization. They start with a range of tools from

multiple vendors, often complemented with internally-developed custom

tools. Of course, they want traceability between the resources across the

lifecycle like requirements, tasks, source code, and test cases. However,

rather than uniformly connected resources, they often find integrations

through specific bridges between each pair of tools – brittle connections

based on unique tool-to-tool APIs. Moreover, their data is often buried inside

the tools. When one tool needs to access another tool’s data, a bridge is

required, implemented through a vendor-specified API often tied to a specific

platform or language. And when a tool needs to record additional

information, yet another bridge is required.

This tightly coupled network of custom bridges can be vulnerable to

everyday disturbances -- changes like upgrades of the underlying OS or API

revisions from the vendors. Additionally, individual tools tend to each have

their own vocabularies, providing alternate names and descriptions for

comparable concepts (or sometimes: different tools all using the same term

with subtly different meaning). Even when tools can share data they may be

unable to share meaning, and a single logical asset can be scattered over

multiple tools, requiring (even more) custom bridges, translation and

synchronization.

The Case for Open Services
Page 3

May 2009

Highlights

An ideal solution would
provide a uniform
architecture and set of
protocols that allow
resources from loosely
coupled tools to be
integrated in a consistent
way.

We can pattern a loosely
coupled integration
architecture after the
Internet.

Characteristics of a solution
An ideal solution would provide a uniform architecture and set of protocols

that allow resources from loosely coupled tools to be integrated in a

consistent way. However, if any single vendor were to invent such an

architecture, it would just create a bigger black box to which other vendors

would need to build bridges. If instead existing open standard technologies

were leveraged, the value of the resulting integrated world would outweigh

the incremental cost of participation. The Internet has precisely these

characteristics – in fact, we can pattern a loosely coupled integration

architecture after the Internet1.

In addition to supporting Internet-style integration, an ideal solution would

have these architectural characteristics of the Internet:

• Scalable - supporting unlimited numbers of users and resources.

• Distributed - supporting globally dispersed users and resources.

• Reliable - working well over a wide range of connectivity profiles.

• Extensible - an open-ended set of resources with extensible

representations and protocols/services for operating on them

• Simple - easy and flexible for tool and content authors to learn and

use, and that does not depend on close cooperation or continuous

coordination between vendors.

• Equitable - equally available to all participants, from individual

projects to large vendors; open-source, in-house or commercial

development; with no barriers to participation.

Practical steps
Transitioning from the ideal to the practical -- how can we leverage the

Internet architecture to achieve our goals for improving lifecycle collaboration

and for sharing lifecycle resources? We propose three incremental steps
that a tool writer can adopt. These steps transform lifecycle resources

1 W3C: Architecture of the World Wide Web, Volume One ,
http://www.w3.org/TR/webarch

The Case for Open Services
Page 4

May 2009

Highlights

Open Services for
Lifecycle Collaboration is
the moniker for this
vendor independent
approach to lifecycle
integration.

Once a lifecycle resource
is URL-addressable, it
can be referenced from
any web page, tool, or
other lifecycle resource.

into “hyper-data,” just like hypertext enables fully connected, flexible content

(Tim Berners-Lee’s discussion on Linked Data2 explains this concept well).

Open Services for Lifecycle Collaboration is the moniker for this vendor

independent approach to lifecycle integration. In each step, we articulate an

Internet standard mechanism that can be used in a uniform way.

Step 1: Internet URLs for resources
The first step is to provide a universal address for each resource – whether it

is a requirement, a test case, a defect, or anything else. The web

mechanism for defining a global address is a Uniform Resource Locator

(URL). Like URLs as web page addresses, we’re using URLs to provide an

address for each of our resources. Once a resource is URL-addressable, it

can be referenced from any web page, tool, or other lifecycle resource.

Step 2: Shared resource formats
Although the first step provides an addressing scheme for each resource, it

doesn’t inform a tool about what’s “inside” the resource – the content is still

unknown. Although on the surface this sounds like a limitation, it’s actually a

design characteristic of this flexible architecture – resources aren’t restricted

to a fixed set of pre-defined types. For example, a requirement could be

represented by a text document describing the requirement, an image

showing the requirement, or an XML document, defining the attributes of

2 W3C: Design Issues for the World Wide Web – Linked Data, May 2007,
Tim Berners-Lee, http://www.w3.org/DesignIssues/LinkedData.html

The Case for Open Services
Page 5

May 2009

Highlights

We can do more with the
resources when we know
some details about the
format of the resource.

Common elements
enable tools to create
resources and to view
and translate them into a
local format.

the requirement. A tool that tracks, for example, the relationship between a

test-case and a requirement need not understand the requirement’s

contents; it need only know of its existence and location. When its users

want to see the contents of the requirement, it functions like a browser,

getting the resource and handing it to an appropriate tool.

Although we value this flexibility, we can do more with the resources when

we know some details about the format of the resource. Therefore for our

second step, we suggest that lifecycle resources be defined in XML and use

common elements. Now, the resource transitions from being a black-box to

semi-transparent; any tool can examine the common elements of these

resources. For example, a tool could view the description of any lifecycle

resource (assuming a common description element was defined). In addition

to the common elements, a tool can augment the resource with additional

elements to record tool-specific information.

One valuable attribute of this Internet-like approach is that tools can share

resources without becoming tightly coupled. Tools only need to agree on

common elements; they can change the format, content or meaning of their

own private elements at will. The architecture can even accommodate lack

of complete agreement on the common elements: the nature of XML allows

a tool to quietly ignore elements it has no use for or doesn’t understand. This

Internet characteristic is sometimes called “graceful degradation”, in contrast

to the typical tool behavior of catastrophic failure when faced with less-than-

total compliance.

Common elements enable tools to create resources and to view and

translate them into a local format, but more resource design guidance is

required to enable deeper collaboration – for example, for a tool to modify a

resource that it has not created. This is important to allow tools that share

common resources to record additional information in existing resources and

to establish references to other resources or provide other tool-specific

information. For example, a business analyst working in a traditional

requirements management tool might document some requirements as

The Case for Open Services
Page 6

May 2009

Highlights

Once we have shared
resource formats, we
need to provide an
appropriate service
interface to them.
Following the theme of
Internet-inspired
simplicity, we have
adopted RESTful web
services as our
programming model.

Tools need not be coded
to or adopt language or
platform-specific API’s,
enabling much looser
coupling between tools.

Use Cases. A designer working in a UML modeling tool might then augment

them, without the necessity for tight dependencies on tool versions or a

formal cutover and conversion from “requirements phase” to “design phase”

typical of today’s integrations.

Step 3: Shared resource services
Once we have shared resource formats, we need to provide an appropriate

service interface to them. Following the theme of Internet-inspired simplicity,

we have adopted RESTful web services as our programming model. For

example, the designer, armed with his UML tool, might observe the need for

new requirements to be documented as use cases. He’d like to create those

requirements and have them participate in the requirements management

tool’s approval process. With a RESTful architecture, that tool might only

need to know the URL to which new requirements are POSTed to trigger

this. The UML tool need not be coded to or adopt the requirement

management system’s language or platform-specific API, enabling much

looser coupling between the two tools. Additional services can be built on

this base, offering the possibility for common query and reporting,

traceability analysis, and process support across the artifacts.

The Case for Open Services
Page 7

May 2009

Highlights

Notice that each of the
steps enumerated above
can be applied to existing
tools as well as new
tools.

Learn more at
http://open-services.net.

Enabling possibilities
Each of these three steps enables improved integration possibilities.

Individual tools may choose to provide additional and valuable custom steps

of integration. The scope of Open Services for Lifecycle Collaboration is

purposefully limited to provide some basic building blocks that can benefit

software delivery organizations and tool vendors alike, not to replace or

constrain the entire universe of lifecycle tool integrations.

Notice that each of the steps enumerated above can be applied to existing

tools as well as new tools. One of our design points is to choose integration

mechanisms that can enhance existing resources, analogous to the way that

Web Services can be used to “wrap” existing services regardless of

implementation.

What IBM is doing
IBM arrived at this Internet-inspired approach to lifecycle collaboration from

our experiences with our own customers’ challenges and from our extensive

work on the Jazz platform. We're sharing our thinking with the community --

describing the approach that has emerged from our efforts as well as our

experiences in resource design. To begin with, we outlined some typical

lifecycle resources and their relationships, and suggested a few sample

resource descriptions. Now we are applying this approach to our new

product development to enable business analysts, developers, and testing

organizations to collaborate across a set of tools. Our Collaborative ALM

initiative (http://jazz.net/projects/collaborative-alm) is using this approach to

integration.

What you can do
If you are creating tools or tool integrations, we invite you to dig further into

the details of our three-step approach to lifecycle collaboration and to

consider this integration architecture for your tools. Ask yourself the

The Case for Open Services
Page 8

May 2009

following questions:

• What are your resources, and their formats?

• Are you interested in collaborating on defining shared formats and

services?

• Are there other steps of integration we should consider?

If you are an organization involved in software delivery, we hope you find

this approach appealing. In the end, our goal is to allow tools to readily share

lifecycle resources, enabling you to more easily integrate, manage, and

evolve lifecycle tools and processes for software delivery in response to new

business demands. Encourage your tool providers to support this integration

architecture so that we can together eliminate some of the challenges and

unnecessary barriers to integrated software delivery.

References
• Open Services for Lifecycle Collaboration (http://open-services.net)

• IBM’s Jazz initiatives (http://jazz.net)

Acknowledgments
Thanks to my colleagues who reviewed and provided helpful input to this

paper: Steve Abrams, Scott Bosworth, James Branigan, Jim des Rivieres,

Robyn Gold, John Kellerman, Simon Johnston, Martin Nally, Scott Rich, and

Carl Zetie.

The Case for Open Services
Page 9

May 2009

© Copyright IBM Corporation 2009

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of
America
05-09
All Rights Reserved

IBM and the IBM logo are trademarks
of International Business Machines
Corporation in the United States,
other countries or both.

Other company, product and service
names may be trademarks or service
marks of others.

