
An Introduction to OSLC and Linked Data
Source: http://open-services.net/resources/presentations/introduction-to-oslc-slideshow/,

by Steve Speicher

Modifications: Jad El-khoury (jad@kth.se)

2

Workshop Objectives

After completing this session, you
 Understand the structure and content of the OSLC standard

– OSLC Core specification
– OSLC domain specification(s)

• Change Management – an example

 Understand the basics of Linked Data
– And its supporting technologies (RDF, RDF Schema, …)

 Gained hands-on experience in developing OSLC-based
adapters

3

Pre-requisites

You understand
 Basics of web technologies

– URI, HTTP, web services, web servers, …
 The REST architectural style

For the hands-on tutorial
 You are familiar with

– Java development
– Eclipse environment
– Web development

• web services, HTML, jsp-files, etc.

4

Who we are …
Jad El-khoury, PhD
• @KTH
• Researcher
• Teacher, Master program

director, …

• Research focus
• Tool interoperability
• Model-based development
• Eclipse Committer

• the OSLC Lyo project

Frederic Loiret, PhD
• @KTH and @OFFIS
• Researcher
• European Project(s)

Manager

• Research focus:
• Tool Interoperability
• OSLC (pre-)standardization

activities

5

Who are you?
Short round-table presentations

• Who are you? What do you do?

• What do you expect from this workshop?

• Any [basic] technologies you want us to cover?

6

Today’s Schedule

When What

09:15-10:15 Introduction to Linked Data

10:15-11:00 Coffee

11:00-12:00 Introduction to OSLC

12:00-13:20 Lunch and Exhibition

13:20-13:50 Keynote Presentation

14:00-15:00 OSLC Hands-on Tutorial

15:00-15:30 Coffee

15:30-17:00 OSLC Hands-on Tutorial

7

Domain Specifications

The OSLC Technology Stack

Source: http://www.w3.org/2007/03/layerCake.png

Linked Data

R
E

S
T

Disclaimer: This is not strictly correct

Requirements
Management

Quality
Management

Change
Management

…

OSLC Core Specification
delegated UI C.R.U.D. for

resources
Common

Resources
…

OSLC

8

Preparation for the Afternoon Tutorial …

Work in pairs?

9

Agenda
• The OSLC approach
• Linked Data and RDF
• The OSLC standard
• Core specification
• domain specification(s)

• Requirement Management – an example

… Followed by the OSLC Hands-on Tutorial

10

What’s next
• The OSLC approach
• Linked Data and RDF
• The OSLC standard
• Core specification
• Domain specification(s)

• Requirement Management – an example

11

More limited ability to respond to change
Constrained by exhausted IT budget and lower productivity

Integrations consume more of the IT budget:
integration failures are the top 2 causes

of software project delays*

The Integration Problem
Point-to-point
Integrations
don’t scale

Monocultures
lock you in

Maintenance, management,
and change costs go up over time

Creating new
integrations is
unpredictable

Ongoing and unexpected
costs drain resources

Past choices
restrict present

action and
future vision

End-user productivity suffers:
Either stuck with the wrong tool,
stuck doing manual integration;

often stuck doing both

* Commissioned study conducted by
Forrester Consulting on behalf of IBM.

12

OSLC’s Simple Solution

Automation

Monitoring

Increased traceability

Architecture of the Web

Linked Data

Increased reuse

Standard Interfaces

Better visibility

“Just Enough” integration

Decreased maintenance costs

Users can work seamlessly across their tools

OSLC is an open and scalable approach to lifecycle integration.
It simplifies key integration scenarios across heterogeneous tools

* Jad’s highlights

*

*

*

*

13

Identify
Scenarios

Iterate on
working
drafts

Call it a
specification

Gain technical
consensus,

The OSLC Approach

http://open-services.net

http://www.oasis-oslc.org/

Now also an
OASIS standard

An open community building practical specifications
for integrating software

14

OSLC’s Big Picture

Open Services for Lifecycle Collaboration
Lifecycle integration inspired by the web

LINKED DATA PLATFORM WORKING GROUP

The Resource
for OSLC

Implementers

Inspired by the web
Proven

Free to use and share
Open

Changing the industry
InnovativeOSLC:

Tests, Libraries, Samples, Examples,
Reference Implementations

Scenario-driven &
Solution-oriented

15

What’s next
• The OSLC approach
• Linked Data and RDF
• The OSLC standard
• Core specification
• Domain specification(s)

• Requirement Management – an example

16

Linked Data
• An approach of publishing structured data, such that

1. Data from different sources can be connected
 Data gets more meaning

2. Data from different sources can be queried
 Data becomes more useful

17

Linked Data turns data into...

Requirements Validation Tests Design Implementation

Tool A Tool B Tool D

R1

R2

T1

T2

D1

D2

I1

I2

Tool C

18

...connected information...

validates

satisfy

validates

satisfy

validates

validates

implements

implements

Requirements Validation Tests Design Implementation

Tool A Tool B Tool D

R1

R2

T1

T2

D1

D2

I1

I2

Tool C

Which requirements for
the UI are related to test
cases that failed on their
last run?

Does every requirement
have a test to validate it?

19

Release

...that can facilitate applied knowledge

User Interface

Processing Engine

validates validates

satisfy

validates

satisfy

validates

implements

implements

Requirements Validation Tests Design Implementation

Tool A Tool B Tool D

R1

R2

T1

T2

D1

D2

I1

I2

Tool C

Why is the number of
failed test cases for the UI
increasing in each
iteration?

How much faster is work
progressing on the UI
versus the Processing
Engine?

20

Linked Data Principles
Tim Berners-Lee’s four principles for Linking Data:

1. Use URIs as names (identity) for things

2. Use HTTP URIs so that people can look up those names

3. When someone looks up a URI, provide useful information using
the standards (RDF, SPARQL)

4. Include links to other URIs so that they can discover more things

21

Linked Data Example
- The Linking Open Data project
• Links data from open-

content projects such as
• encyclopaedias and dictionaries
• government statistics
• bibliographic data
• music
• research papers
• …

Linked Data - Structured Data on the Web; by David
Wood, Marsha Zaidman, and Luke Ruth; Fig 1.5

 Access to data & its semantics
 No longer Data Silos
 Discoverability
 Data discovered and used in

unpredictable ways

22

Linked Data Technologies
• Builds upon standard Web technologies

• RDF standard(s)
• HTTP
• URIs

Source: http://www.w3.org/2007/03/layerCake.png

Linked Data

23

RDF Standard(s)
RDF (Resource Description Framework)

• a standard to describe structured data on the web.
• designed to be understood by computers (xml) - not to be displayed to

people (html)

Examples of Use
• Describing time schedules for web events
• Describing information about web pages (content, author, created and

modified date)

RDF key concepts:
1. Graph data model
2. URI-based vocabulary
3. Serialization syntaxes
4. Vocabularies
We’ll briefly look at some of them.

24

1. The RDF graph data model

Adapted from:
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#section-data-model

The predicate (also called a property) denotes a relationship
between the subject and object.

Subject Object
Predicate

Requirement 1 “High”

Amanda Car
owns

Priority

Basic structure - The Triple
 consisting of a subject, a predicate and an object.

25

1. The RDF graph data model

validated by

Triple

Requirement
28465 Improve

Remote Steering

Test Case
35645: Test

Steering

priority
High

Subject
= Resource

(Always a URI)

Predicate
= Relationship/property

(Always a URI)

Object
= Resource

or
= literal value

RDF triple (subject-predicate-object)

26

1. The RDF graph data model
RDF triple (subject-predicate-object)

<http://...validatedby>

Triple

<http://...require
ment28465_

improve_remote
steering>

<http://...testcas
e35645_test_ste

ering>

<http://...priority>
“High”

Subject
= Resource

(Always a URI)

Predicate
= Relationship/property

(Always a URI)

Object
= Resource

or
= literal value

27

1. The RDF graph data model

• Set of triples – leads to an RDF graph
• No hierarchical relationships

28

There is a web of URIs around a development effort

<http://.../test
case>

<http://.../req>

<http://.../workitem
>

<http://.../test
case>

<http://.../test
case>

<http://.../test
case>

<http://.../release><http://.../bug>

<http://.../req>

<http://.../req>

<http://.../req>

<http://.../req>

<http://.../workitem
>

<http://.../workitem
>

<http://.../workitem
>

<http://.../workitem
>

<http://.../test
case>

<http://.../change
request>

<http://.../build>

<http://.../change
request>

<http://.../change
request>

<http://.../change
request>

<http://.../change
request>

<http://.../build>

<http://.../build>

<http://.../build>

<http://.../build>
<http://.../build>

<http://.../build>

<http://.../build>
<http://.../build>

<http://.../build>

<http://.../build>

<http://.../build>
<http://.../build>

<http://.../build>

<http://.../build>

<http://.../bug>

<http://.../build>
<http://.../build>

<http://.../build>

<http://.../testresult
>

<http://.../testresult
>

<http://.../testresult
>

<http://.../build>

<http://.../change
request>

<http://.../bug>

<http://.../testresult
>

<http://.../testresult
>

validate

29

1. The RDF graph data model
- Compare to other data models
Compare to other data models

• Relational model
• object-oriented model

1. Closed-world assumption vs Open-world assumption
• Relational model & object-oriented model

• If you are of type X, you must have these properties.
• RDF (& the natural world)

• If you have these properties, you must be of type X.
 Implications?

2. A property in the RDF model is the “first-class citizen”
• In the OO model, it’s defined in the context of a class.

3. Unlike in the OO model
• The RDF model does not have methods
• All parts of the RDF graph are public.

30

1. The RDF graph data model
- Compare to other data models

Bob

High

Implemented

owner

priority

state

created on
November
24, 2011

Requirement
28465 Improve

Remote Steering

Lunar
Rover 3.1

release

September
20, 2014

release to
orbit date

owner
Iris

Janet

High

Executed

pass

owner

priority

state

result

created on December
7, 2011

Test Case
35645: Test

Steeringrelease

validated by

Requirement Owner Priority … Release Validated by
R28464 … … … … …

R28465 Improve
Remote Steering

Bob High … LR3.1 TC35645

R28466 … … … … … …

Rover Release Owner Release to orbit date

Lunar Rover 3.0 … …

Lunar Rover 3.1 Iris Sept 14, 2014

Test Case Owner Priority ...

Test Case 35645
Test Steering

Janet High ...

Lunar Rover 3.1 … ...Closed-world assumption vs Open-
world assumption

 Implications?

31

2. URI-based vocabulary

When there is a need to identify anything, use a URI
(there are a few exceptions).

• Using URIs allows everything to be linked together.
• It also allows common agreed-upon meaning for

relationships and for resource types

<http://...Test Case 1> <http://...validates> <http://...Requirement 1>

32

3. Serialization syntaxes
The RDF model provides for describing RDF triples.

Support for different serialization formats:
 Turtle - specialized for RDF
 RDF/XML – derived from standard XML
 JSON

33

3. Serialization syntaxes
- Example

<http://example.com/TestCases/1> a oslc_qm:TestCase ;

oslc_qm:validatesRequirement <http://example.com/Requirements/1>

{

"rdf:about": "http:\/\/example.com\/TestCases\/1",

"rdf:type": [{

"rdf:resource": "http:\/\/open-services.net\/ns\/qm#TestPlan"

}],

"oslc_qm:validatesRequirement": {

"rdf:resource": "http:\/\/example.com\/Requirements\/1"

}

}

<oslc_qm:TestCase rdf:about="http://example.com/TestCases/1">

<oslc_qm:validatesRequirement rdf:resource="http://example.com/Requirements/1"/>

</oslc_qm:TestCase>

Object
Predicate

Subject

<http://...Test Case 1> <http://...validates> <http://...Requirement 1>

Turtle

JSON

RDF/XML

34

4. Vocabularies
• RDF describes resources
We need a vocabulary to define the kind of resources
(Classes) that can exist and their relationships!

• Approaches:
• RDF Schema (RDFS)

• A basic language framework
• Adds classes, subclasses and

properties to resources
• Web Ontology Language (OWL)

• More complex formalised language
• uses logic to process information and

make deductions.

35

4. Vocabularies
- RDF Schema (RDFS)

• RDF Schema – an extension of RDF
• Provides the framework to describe application-specific

classes of resources.
• Does not provide actual application-specific classes and

properties.
• Resources are defined as instances of classes, and

subclasses of classes.

Class/metadata

Object/data Object/data Object/data

RDFS

RDF

36

4. Vocabularies
- Example application-specific classes

• Dublin Core Metadata Initiative (DCMI)
• Defines a set of properties for describing documents.

Property Definition

Creator An entity primarily responsible for making the
content of the resource

Title A name given to the resource

Format The physical or digital manifestation of the
resource

Date A date of an event in the lifecycle of the
resource

Publisher An entity responsible for making the
resource available

Subject A topic of the content of the resource
…

37

Linked Data Example
- The Linking Open Data project
• Links data from open-

content projects such as
• encyclopaedias and dictionaries
• government statistics
• bibliographic data
• music
• research papers
• …

Linked Data - Structured Data on the Web; by David
Wood, Marsha Zaidman, and Luke Ruth; Fig 1.5

 Access to data & its semantics
 No longer Data Silos
 Discoverability
 Data discovered and used in

unpredictable ways

38

What’s next
• The OSLC approach
• Linked Data and RDF
• The OSLC standard
• Core specification
• Domain specification(s)

• Requirement Management – an example

39

OSLC’s Simple Solution

Automation

Monitoring

Increased traceability

Architecture of the Web

Linked Data

Increased reuse

Standard Interfaces

Better visibility

“Just Enough” integration

Decreased maintenance costs

Users can work seamlessly across their tools

OSLC is an open and scalable approach to lifecycle integration.
It simplifies key integration scenarios across heterogeneous tools

* Jad’s highlights

*

*

*

*

40

OSLC – relation to Linked Data?
• OSLC adopts the Linked Data

principles
• OSLC links lifecycle data

• OSLC adopts the RDF standards
and its key concepts

1. Graph data model
2. URI-based vocabulary
3. Serialization syntaxes
4. …

• OSLC Contributes with
• The standard rules and patterns for

integrating lifecycle tools.
• Common approach to perform resource

creation, queries, …
• Common resource properties
• Domain specifications (vocabularies)

• resource definitions for Lifecycle
tools

41

Tim Berners-Lee’s four principles applied to OSLC:
 Use URIs as names for things

– In OSLC, each artifact in the lifecycle (for example, requirements,
change requests, test cases...) is identified by a URI.

 Use HTTP URIs so that people can look up those names.
– In OSLC, each artifact in the lifecycle is an HTTP resource.

Standard HTTP methods (GET, PUT, POST, DELETE) are used to
interact with them.

 When someone looks up a URI, provide useful information using the
standards (RDF*, SPARQL)

– Each OSLC resource has an RDF representation. OSLC resources
can be queried using SPARQL.

 Include links to other URIs so that they can discover more things.
– OSLC lifecycle artifacts are linked by relationships (for example,

validatesRequirement or testedByTestCase) which are defined by
URIs.

OSLC – relation to Linked Data?

42

Anatomy of OSLC

OSLC Core Specification

OSLC Change Mgt
Specification

OSLC Requirements
Specification

OSLC Domain X
Specification

Core: Specifies the primary integration
techniques for integrating lifecycle tools
– the standard rules and patterns for
using HTTP and RDF that all the domain
workgroups must adopt in their
specifications

Domain:

1. Defines integration scenarios for a
given lifecycle topic

2. Specifies a common vocabulary for
the lifecycle artifacts needed to
support the scenarios.

How

W
ha

t

Example:

• The Core specification describes Delegated UIs and Creation Factories
and states that OSLC service providers MAY provide them.

• The Change Management specification states that CM service providers
MUST provide them.

43

What’s next
• The OSLC approach
• Linked Data and RDF
• The OSLC standard
• Core specification
• Domain specification(s)

• Requirement Management – an example

44

First, What is a tool? (from an integration perspective)

OSLC Resource

OSLC Service

manages

OSLC Service
Provider

example: project, module, …

example: Change Management
capability

example: work item (bug,
defect, enhancement request)

provides an
implementation of

The central organizing concept of OSLC.
• Reflects the tool’s containers or partitions

• Enables tools to expose resources
• Provides access to services (enabling

consumers to navigate resources, and
create new ones)

Set of capabilities that enable a web client to
create, retrieve, update and delete resources

Managed by an OSLC Service, may have
properties and may link to other resources
including those provided by other OSLC

Services.

OSLC Service
Provider catalog

• Allows for the discovery of the service
provider set(s).

• They help to simplify the configuration of
tools (ex. OAuthConfiguration).

example: IBM Rational Team
Concert

provides

45

OSLC defines the following technical areas:

1. Discovery of
capabilities

5. Delegated UI for
Create and Select

2. HTTP C.R.U.D. for
resources

4. Querying for
resources

6. UI Previews for
Resource Links

3. Standard resource
representations

46

Starting from the catalog you
can discover services and their
capabilities. This is a common
pattern in OSLC.

OSLC capabilities:
Delegated UI Dialog allows you to
create or find resources using a UI
provided by the OSLC tool
Creation Factory allows you to
create resources programmatically
Query Capability allows you to
query for resources

1. Discovery of capabilities

47

2. HTTP C.R.U.D

OSLC allows manipulation of resources using standard
HTTP C.R.U.D

Create = POST
Request = GET
Update = PUT
Delete = DELETE

 OSLC follows the REST architectural pattern.

48

The REST Architectural Pattern
• Is a software architecture style for web services.

• a simpler alternative to SOAP and WSDL-based Web services

• The primary purpose of a RESTful service is to manipulate representations of
Web resources using a uniform set of stateless operations.

• The design pattern for REST interfaces
• Interface with external systems using resources identified by URIs, for example

‘/person/paul’
• A resource can be operated upon using standard HTTP verbs (GET, POST, PUT,

DELETE).

• Architectural constraints
• Client-server

• Servers and clients may be replaced/developed independently.
• Stateless

• no client context being stored on the server between requests.
• session state is held in the client

• …

Source: http://en.wikipedia.org/wiki/Representational_state_transfer

49

2. HTTP C.R.U.D
- Resource Retrieval (Request)
Use HTTP GET and standard HTTP content negotiation
 Client uses HTTP Accept request header to specify desired resource formats

Use standard content(MIME) types

Partial representations can be requested via HTTP URL key=value pair as
?oslc.properties=
 Allows for minimal retrieval of properties
 Get Defect 123 (all properties)

 Get Defect 123 (just title and status)

Accept: application/json, application/xml

GET http://bugs/123

GET http://bugs/123?oslc.properties=dcterms:title,oslc_cm:status

50

2. HTTP C.R.U.D
- Resource Creation (Create)
Create a resource using HTTP POST, with the resource body in format
of choice
 URI for doing the POST is defined in the oslc:ServiceProvider in

the oslc:creationFactory service

Response is a 201-Created with Location HTTP header indicating
URI for resource
Request may be rejected for any number of reasons
 Insufficient permissions
 Missing required values
 Invalid data choices
 ...and … and ...

Valid resource formats for creation are defined by:
 domain specifications
 service provider may define its own resources and formats
 optionally, by resource shape associated with creation factory

51

2. HTTP C.R.U.D
- Resource Modification (Update)

1. Use HTTP GET to get resource properties to be
updated
 You’ll get an ETag back

2. Change only the property values you need to change
 Clients must preserve unknown content

3. Use HTTP PUT to send updated resource
 Use If-Match HTTP request header with ETag, services may reject

your request without it
 HTTP PUT will completely replace the resource representation
 We are moving towards PATCH – new HTTP verb

http://tools.ietf.org/html/rfc5789

It is possible to update only selected properties

52

2. HTTP C.R.U.D
- Resource Deletion (Delete)

Use HTTP DELETE on the resource identifier

May not be allowed

Response usually:
• 200-OK
• 204-No-Content
• 400-Bad-Request

• 403-Forbidden

53

3. Resource representations
OSLC services should handle any type of resource
Not just those defined by OSLC

Resources defined by OSLC use RDF data model
 therefore are simply defined by their set of properties

OSLC services MUST produce and consume RDF/XML
representations
Clients and services MUST NOT assume any subset of RDF/XML

Other representations are allowed such as:
XML: OSLC defined format that allows for consistent formats and is

RDF/XML valid
JSON: Rules for representing namespaces and QName properties
Turtle: No constraints, use as is (may be preferred by future specs)
Atom Syndication Format: <atom:content> SHOULD be RDF/XML

54

3. Resource representations
- A few words on link properties

Links are properties where the property values are
URIs

Don't make assumptions about the target of links
OSLC supports an open model
Needed to achieve goal of “loosely coupled” integrations
Clients need to be flexible and expect anything

Turtle format for a bug resource (abbreviated)
<http://example.com/bugs/2314>

a oslc_cm:ChangeRequest ;

dcterms:relation
<http://server/app/bugs/1235> ;

55

4. Querying for resources

Query capability has base URI

Clients form query URI and HTTP GET the results

OSLC services MAY support OSLC Query Syntax
 http://open-services.net/bin/view/Main/OSLCCoreSpecQuery

56

Query syntax overview
 Filter results by appending “oslc.where=” with query clause to query base URI

 Only boolean operation allowed is “and” which represents conjunction
 “or” for disjunction is not defined in the interests of keeping the syntax simple.

 Retrieve just what you want with “oslc.select=”
 Defined ordering using “oslc.orderBy=”
 Full-text search via “oslc.searchTerms=”

Comparison Operators
= test for equality
!= test for inequality
< test less-than
> test greater-than
<= test less-than or equal
>= test greater-than or equal

'in' operator:
Test for equality to any of the
values in a list. The list is a
comma-separated sequence
of values, enclosed in square
brackets: in [“high”,”critical”]

57

Query syntax example

Find high severity bugs created after April fools day

Find bugs related to test case 31459

Find all bugs created by John Smith

http://example.com/bugs?oslc.where=

cm:severity="high" and dcterms:created>"2010-04-01"

http://example.com/bugs?oslc.where=

dcterms:creator{

foaf:givenName="John" and foaf:familyName="Smith"}

http://example.com/bugs?oslc.prefix=qm=

<http://qm.example.com/ns>&

oslc.where=qm:testcase=<http://example.com/tests/31459>

58

2. iframe's src
set to delegated
UI's URL

1. Click to launch
Create delegated UI

3. Selection
made

4. Click OK.
Sends message
(link+label) to
parent window

5. Delegated UI for Create and Select
Delegated UI - renders the source application UI

in the target application.

59

Delegated UI key points
Delegated UIs support both creation and selection of resources

Two communication protocols are supported for iframes:
HTML5 postMessage() ← preferred method

– Supported in most modern browers
Window object's window.name

– Supported in older browsers and Eclipse embedded web widget
Consumer selects which protocol to use, informs provider via fragment

identifier
Tremendous value for resource creation
Traditionally most service logic was communicated to client and new

dialog built
Now the rules for creation and dialog change as needed

Prefilling of creation dialog done by “creating” a dialog resource
HTTP POST of resource format to creation dialog URL, response is URL

of dialog prefilled

60

6. UI Preview

Hover over link

Scenario supported: hover over link to get in
context preview of resource

61

What’s next
• The OSLC approach
• Linked Data and RDF
• The OSLC standard
• Core specification
• Domain specification(s)

• Requirement Management – an example

62

Domain specification(s)
OSLC Specifications Cover Many Domains
• Architecture Management
• Asset Management
• Automation
• Change Management
• Configuration Management
• Quality Management
• Requirements Management
• …

See http://open-services.net/specifications/

63

Requirements Management
http://open-services.net/bin/view/Main/RmSpecificationV2

Defining a Resource &
its Properties

64

What’s next
• The OSLC approach
• Linked Data and RDF
• The OSLC standard
• Core specification
• domain specification(s)

• Requirement Management – an example

… the OSLC Hands-on Tutorial

