
Last modified: 2 December 2011 1

Towards	 a	 Basic	 Profile	 for	 Linked	 Data	
A	 collection	 of	 best	 practices	 and	 simple	 approach	 for	 a	 Linked	 Data	 architecture	

Abstract

W3C defines a wide range of standards for the Semantic Web and Linked Data suitable
for many possible use cases. While using Linked Data as an application integration
technology in the Application Lifecycle Management (ALM) domain IBM has found that
there often are several possible ways of applying the existing standards and little guidance
is provided on how to combine them. Typical use cases include accessing, updating and
creating resources from servers that expose their resources as Linked Data. This
document discusses motivating background information and a proposal for a Basic Profile
for Linked Data.

Motivation
There is interest in Linked Data technologies for more than one purpose. We have seen
interest for the purpose of exposing information – for example public records – on the
Internet in a machine-readable format. We have also seen interest in the use of Linked
Data for inferring new information from existing information, for example in
pharmaceutical applications or IBM Watson. The IBM Rational team has been using
Linked Data as an architectural model and implementation technology for application
integration.

IBM Rational is a vendor of software development tools, particularly those that support
the general software development process such as bug tracking, requirements management
and test management tools. Like many vendors who sell multiple applications, we have
seen strong customer demand for better support of more complete business processes - in
our case software development processes - that span the roles, tasks and data addressed by
multiple tools. This demand has existed for many years, and our industry has tried several
different architectural approaches to address the problem. Here are a few:

1. Implement some sort of application programming interface (API) for each
application, and then, in each application, implement “glue code” that exploits the
APIs of other applications to link them together.

2. Design a single database to store the data of multiple applications, and implement
each of the applications against this database. In the software development tools
business, these databases are often called “repositories”.

3. Implement a central “hub” or “bus” that orchestrates the broader business process
by exploiting the APIs described in option 1.

While a discussion of the failings of each of these approaches is outside the scope of this
document it is fair to say that although each one of them has its adherents and can point to
some successes, none of them is wholly satisfactory. So, as an alternative, we have been
exploring over the last 5 years the use of Linked Data as an application integration

Last modified: 2 December 2011 2

technology. We have shipped a number of products using this technology and are
generally pleased with the result. We have more products in development that use these
technologies and we are also seeing a strong interest in this approach in other parts of our
company.

We are pleased – even passionate – about the results we have seen using Linked Data as
an integration technology but we have found successful adoption to be difficult. It has
taken us a number of years of experimentation to achieve the level of understanding that
we have today, we have made some costly mistakes along the way, and we see no
immediate end to the challenges and learning that lie before us. As far as we can tell, there
is only a very limited number of people trying to use Linked Data technologies in the
ways we are using them, and the little information that is available on best practices and
pitfalls is widely dispersed. We believe that Linked Data has the potential to solve some
important problems that have frustrated the IT industry for many years, or at least make
significant advances in that direction, but this potential will only be realized if we can
establish and communicate a much richer body of knowledge on how to exploit these
technologies. In some cases, there also are gaps in the Linked Data standards that need to
be addressed. To help with this process, we would like to share information on how we are
using these technologies, the best practices and anti-patterns we have identified, and the
specification gaps we have had to fill ourselves.

The best practices and anti-patterns can be categorized (but are not limited) to the
following:

• Resources - a summary of the HTTP and RDF standard techniques and best
practices that you should use, and anti-patterns you should avoid, when
constructing clients and servers that read and write linked data.

• Containers - defines resources that allow new resources to be created using HTTP
POST and existing resources to be found using HTTP GET

• Paging - defines a mechanism for splitting the information in large resources into
pages that can be fetched incrementally

• Validation - defines a simple mechanism for describing the properties that a
particular type of resource must or may have

The following sections provide details regarding this proposal for a “Basic Profile for
Linked Data”.

Related Topics
This publication has a number of related efforts that accompany it. The intent of this
publication is to promote some ideas and motivate specification efforts in potentially a
number of communities. It is worth elaborating on these relationships:

W3C Linked Enterprise Data Patterns Workshop – This proposal is intended to elaborate
on what is seen as missing or needed as referenced by one of IBM’s position papers to the
workshop.

Last modified: 2 December 2011 3

Open Services for Lifecycle Collaboration (OSLC) – The OSLC Core V2 specification
defines some of these patterns and anti-patterns, perhaps not in an ideal way. This
proposal can provide the basis for a simpler and more standards aligned way for future
OSLC specifications.

Terminology
Terminology is based on W3C's Architecture of the World Wide Web and Hyper-text
Transfer Protocol (HTTP/1.1).
Link : A relationship between two resources when one resource (representation) refers to
the other resource by means of a URI. (reference: WWWArch)
Linked Data : Defined by Tim Berners-Lee as four rules: 1) Use URIs as names for things
2) Use HTTP URIs so that people can look up those names. 3) When someone looks up a URI,
provide useful information, using the standards (RDF*, SPARQL) 4) Include links to
other URIs. so that they can discover more things.(reference: LinkedData)
Specification : An act of describing or identifying something precisely or of stating a
precise requirement
Basic Profile : A specification that defines the needed specification components from
other specifications as well as providing clarifications and patterns. Within the "Basic
Profile for Linked Data", it is sometimes referred to as a shortened "Basic Profile".
Client : A program that establishes connections for the purpose of sending requests.
(reference: HTTP)
Basic Profile Client : A client that adheres to the rules defined in the Basic Profile.
Server: An application program that accepts connections in order to service requests by
sending back responses. Any given program may be capable of being both a client and a
server; our use of these terms refers only to the role being performed by the program for a
particular connection, rather than to the program's capabilities in general. Likewise, any
server may act as an origin server, proxy, gateway, or tunnel, switching behavior based on
the nature of each request. (reference: HTTP)
Basic Profile Server : A server that adheres to the rules defined in the Basic Profile.

Basic Profile Resources

Basic Profile Resources are HTTP linked data resources that conform to some simple
patterns and conventions. Most Basic Profile Resources are domain-specific resources that
contain data for an entity in some domain, which could be commercial, governmental,
scientific, religious or other. A few Basic Profile Resources are defined by the Basic
Profile specifications and are cross-domain. All Basic Profile Resources follow the rules
of Linked Data, namely:

1. Use URIs as names for things

2. Use HTTP URIs so that people can look up those names.

Last modified: 2 December 2011 4

3. When someone looks up a URI, provide useful information, using the standards
(RDF*, SPARQL)

4. Include links to other URIs. so that they can discover more things.

Basic Profile adds a few rules of its own. Some of these rules could be thought of as
clarification of the basic linked data rules.

1. Basic Profile Resources are HTTP resources that can be created, modified,
deleted and read using standard HTTP methods.
(Clarification or extension of Linked Data Rule 2.) Basic Profile Resources are
created by HTTP POST (or PUT) to an existing resource, deleted by HTTP
DELETE, updated by HTTP PUT or PATCH, and "fetched" using HTTP GET.
Additionally Basic Profile Resources can be created, updated and deleted using
SPARQL Update.

2. Basic Profile Resources use RDF to define their state.
(Clarification of Linked Data rule 3.) The state (in the sense of state used in the
REST architecture) of a Basic Profile Resource is defined by a set of RDF triples.
Binary resources and text resources are not Basic Profile Resources since their
state cannot be easily or fully represented in RDF. XML resources may or may not
be suitable as Basic Profile Resources. Some XML resources are really data-
oriented resources encoded in XML that can be easily represented in RDF. Other
XML documents are essentially marked up text documents that aren’t easily
represented in RDF. Basic Profile Resources can be mixed with other resources in
the same application.

3. You can request an RDF/XML representation of any Basic Profile Resource.
(Clarification of Linked Data rule 3.) The resource may have other representations
as well. These could be other RDF formats, like Turtle, N3 or NTriples, but non-
RDF formats like HTML and JSON would also be popular additions, and Basic
Profile sets no limits.

4. Basic Profile clients use Optimistic Collision Detection on Update.
(Clarification of Linked Data rule 2.) Because the update process involves first
getting a resource, modifying it and then later putting it back to the server there is
the possibility of a conflict, e.g. some other client may have updated the resource
since the GET. To mitigate this problem, Basic Profile implementations should use
the HTTP If-Match header and HTTP ETags to detect collisions.

5. Basic Profile Resources use standard media types.
(Clarification of Linked Data rule 3.) Basic Profile does not require and does not
encourage the definition of any new media types. A goal of Basic Profile is that
any standards-based RDF or Linked Data client be able to read and write Basic
Profile data, and defining new media types would prevent that in most cases.

Last modified: 2 December 2011 5

6. Basic Profile Resources use standard vocabularies.
Basic Profile Resources use common vocabularies (classes, properties, etc) for
common concepts. Many web sites define their own vocabularies for common
concepts like resource types, label, description, creator, last-modification-time,
priority, enumeration of priority values and so on. This is usually viewed as a good
feature by users who want their data to match their local terminology and
processes, but it makes it much harder for organizations to subsequently integrate
information in a larger view. Basic Profile requires all resources to expose
common concepts using a common vocabulary for properties. Sites may choose to
additionally expose the same values under their own private property names in the
same resources. In general, Basic Profile avoids inventing its own property names
where possible – it uses ones from popular RDF-based standards like the RDF
standards themselves, Dublin Core, and so on. Basic Profile invents property
URLs where no match is found in popular standard vocabularies. A number of
recommended standard properties for use in Basic Profile Resources are listed
below.

7. Basic Profile Resources set rdf:type explicitly.
A resource’s membership in a class extent can be indicated explicitly – by a triple
in the resource representation that uses the rdf:type predicate and the URL of the
class - or derived implicitly. In RDF there is no requirement to place an rdf:type
triple in each resource, but this is a good practice, since it makes query more useful
in cases where inferencing is not supported. Remember also that a single resource
can have multiple values for rdf:type. For example, the dpbedia entry for Barack
Obama has dozens of rdf:types. Basic Profile sets no limits to the number of types
a resource can have.

8. Basic Profile Resources use a restricted number of standard datatypes. RDF
does not by itself define datatypes to be used for property values, so Basic Profile
lists a set of standard datatypes to be used in Basic Profile. Here is the list:

o Boolean: a boolean type as specified by XSD Boolean
(http://www.w3.org/2001/XMLSchema#boolean, reference: XSD
Datatypes).

o DateTime: a Date and Time type as specified by XSD dateTime
(http://www.w3.org/2001/XMLSchema#dateTime, reference: XSD
Datatypes)

o Decimal: a decimal number type as specified by XSD Decimal
(http://www.w3.org/2001/XMLSchema#decimal, reference: XSD
Datatypes)

o Double: a double floating-point number type as specified by XSD Double
(http://www.w3.org/2001/XMLSchema#double, reference: XSD
Datatypes).

o Float: a floating-point number type as specified by XSD Float
(http://www.w3.org/2001/XMLSchema#float, reference: XSD Datatypes).

Last modified: 2 December 2011 6

o Integer: an integer number type as specified by XSD Integer
(http://www.w3.org/2001/XMLSchema#integer, reference: XSD
Datatypes).

o String: a string type as specified by XSD String
(http://www.w3.org/2001/XMLSchema#string, reference: XSD Datatypes).

o XMLLiteral: a Literal XML value (http://www.w3.org/1999/02/22-rdf-
syntax-ns#XMLLiteral)

9. Basic Profile clients expect to encounter unknown properties and content.
Basic Profile provides mechanisms for clients to discover lists of expected
properties for resources for particular purposes, but also assumes that any given
resource may have many more properties than are listed. Some servers will only
support a fixed set of properties for a particular type of resource. Clients should
always assume that the set of properties for a resource of a particular type at an
arbitrary server may be open in the sense that different resources of the same type
may not all have the same properties, and the set of properties that are used in the
state of a resource are not limited to any pre-defined set. However, when dealing
with Basic Profile Resources, clients should assume that a Basic Profile server may
discard triples for properties of which it does have prior knowledge. In other
words, servers may restrict themselves to a known set of properties, but clients
may not. When doing an update using HTTP PUT, a Basic Profile client must
preserve all property-values retrieved using GET that it doesn’t change whether it
understands them or not. (Use of PATCH or SPARQL Update instead of PUT for
update avoids this burden for clients.)

10. Basic Profile clients do not assume the type of a resource at the end of a link.
Many specifications and most traditional applications have a “closed model”, by
which we mean that any reference from a resource in the specification or
application necessarily identifies a resource in the same specification (or a
referenced specification) or application. By contrast, the HTML anchor tag can
point to any resource addressable by an HTTP URI, not just other HTML
resources. Basic Profile works like HTML in this sense. A HTTP URI reference in
one Basic Profile resource may in general point to any resource, not just a Basic
Profile resource.

There are numerous reasons to maintain an open model like HTML’s. One is that it
allows data that has not yet been defined to be incorporated in the web in the
future. Another reason is that it allows individual applications and sites to evolve
over time - if clients assume that they know what will be at the other end of a link,
then the data formats of all resources across the transitive closure of all links has to
be kept stable for version upgrade.

A consequence of this independence is that client implementations that
traverse HTTP URI links from one resource to another should always code
defensively and be prepared for any resource at the end of the link. Defensive

Last modified: 2 December 2011 7

coding by clients is necessary to allow sets of applications that communicate via
Basic Profile to be independently upgraded and flexibly extended.

11. Basic Profile servers implement simple validations for create and update.
Basic Profile servers should try to make it easy for programmatic clients to create
and update resources. If Basic Profile implementations associate a lot of very
complex validation rules that need to be satisfied in order for an update or creation
to be accepted, it becomes difficult or impossible for a client to use the protocol
without extensive additional information specific to the server that needs to be
communicated outside of the Basic Profile specifications. The recommended
approach is for servers to allow creation and update based on the sort of simple
validations that can be communicated programmatically through a Shape (see
constraints section). Additional checks required to implement more complex
policies and constraints should result in the resource being flagged as requiring
more attention, but should not cause the basic create or update to fail.

It is possible that some applications or sites will have very strict requirements for
complex constraints for data, and that they are unable or unwilling to allow the
creation of resources that do not satisfy all those constraints even temporarily.
Those applications or sites should be aware that as a consequence they may be
making it difficult or impossible for external software to use their interfaces
without extensive customization.

12. Basic Profile resources always use simple RDF predicates to represent links.
By always representing links as simple predicate values, Basic Profile makes it
very simple to know how links will appear in representations, and also makes it
very simple to query them. When there is a need to express properties on a link,
Basic Profile adds an RDF statement with the same subject, object and predicate as
the original link, which is retained, plus any additional "link properties". Basic
Profile resources do not use "inverse links" to support navigation of a relationship
in the opposite direction, since this creates a data synchronization problem and
complicates query. Instead, Basic Profile assumes that clients can use query to
navigate relationships in the opposite direction from the direction supported by the
underlying link.

Common Properties
The following are some properties from well-known RDF vocabularies that are
recommended for use in Basic Profile Resources. Basic Profile requires none of them, but
a specification based on Basic Profile may require one of these properties or more for a
particular resource type.

Commonly used namespace prefixes:
@prefix dcterms: <http://purl.org/dc/terms/>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

Last modified: 2 December 2011 8

@prefix bp: <http://open-services.net/ns/basicProfile#>.
@prefix xsd: < http://www.w3.org/2001/XMLSchema#>.

From Dublin Core
URI: http://purl.org/dc/terms/

Property Range Comment

dcterms:contributor dcterms:Agent
The identifier of a resource (or blank node) that is a contributor of
information. This resource may be a person or group of people, or
possibly an automated system.

dcterms:creator dcterms:Agent
The identifier of a resource (or blank node) that is the original creator of
the resource. This resource may be a person or group of people, or
possibly an automated system.

dcterms:created xsd:dateTime The creation timestamp

dcterms:description rdf:XMLLiteral
Descriptive text about the resource represented as rich text in XHTML
format. SHOULD include only content that is valid and suitable inside
an XHTML <div> element.

dcterms:identifier rdfs:Literal
A unique identifier for the resource. Typically read-only and assigned
by the service provider when a resource is created. Not typically
intended for end-user display.

dcterms:modified xsd:dateTime Date on which the resource was changed.

dcterms:relation rdfs:Resource
The URI of a related resource. This is the predicate to use when you
don't know what else to use. If you know more specifically what sort of
relationship it is, use a more specific predicate.

dcterms:subject rdfs:Resource

Should be a URI (see dbpedia.org) "Typically, the subject will be
represented using keywords, key phrases, or classification codes.
Recommended best practice is to use a controlled vocabulary. To
describe the spatial or temporal topic of the resource, use the Coverage
element." (from Dublin Core)

dcterms:title rdf:XMLLiteral
A name given to the resource. Represented as rich text in XHTML
format. SHOULD include only content that is valid inside an XHTML
 element.

From RDF

URI: http://www.w3.org/1999/02/22-rdf-syntax-ns#

Property Range Comment

rdf:type rdfs:Class
The type or types of the resource. Basic Profile recommends that the rdf:type(s) of a
resource be set explicitly in resource representations to facilitate query with non-
inferencing query engines

 From RDF Schema

URI: http://www.w3.org/2000/01/rdf-schema#

Last modified: 2 December 2011 9

Property Range Comment
rdfs:member rdf:Resource The URI (or blank node identifier) of a member of a container.

rdfs:label rdf:Resource "Provides a human-readable version of a resource name." (From
RDFS)

Basic Profile Container

Many HTTP applications and sites have organizing concepts that partition the overall
space of resources into smaller containers. Blog posts are grouped into blogs, wiki pages
are grouped into wikis, and products are grouped into catalogs. Each resource created in
the application or site is created within an instance of one of these container-like entities,
and users can list the existing artifacts within one. There is no agreement across
applications or sites, even within a particular domain, on what these grouping concepts
should be called, but they commonly exist and are important. Containers answer two basic
questions, which are:

1. To which URLs can I POST to create new resources?
2. Where can I GET a list of existing resources?

In the XML world, Atom Publishing Protocol (APP) has become popular as a standard for
answering these questions. APP is not a good match for Linked Data - this specification
shows how the same problems that are solved by APP for XML-centric designs can be
solved by a simple Linked Data usage pattern with some simple conventions on posting to
RDF containers. We call these RDF containers that you can POST to Basic Profile
Containers. Here are some of their characteristics:

1. Clients can retrieve the list of existing resources in a Basic Profile Container.
2. New resources are created in a Basic Profile Container by POSTing to it.
3. Any resource can be POSTed to a Basic Profile Container - a resource does not

have to be a Basic Profile Resource with an RDF representation to be POSTed to a
Basic Profile Container.

4. After POSTing a new resource to a container, the new resource will appear as a
member of the container until it is deleted. A container may also contain resources
that were added through other means - for example through the user interface of
the site that implements the Container.

5. The same resource may appear in multiple containers. This happens commonly if
one container is a "view" onto a larger container.

6. Clients can get partial information about a Basic Profile Container without
retrieving a full representation including all of its contents.

The representation of a Basic Profile Container is a standard RDF container representation
using the rdfs:member predicate. For example, if you have a container with the URL
http://example.org/BasicProfile/container1, it might have the following representation:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
<http://example.org/BasicProfile/container1>

a rdfs:Container ;

Last modified: 2 December 2011 10

rdfs:member <http://acme.com/members/000000000>;
… 999999998 more triples here …
rdfs:member <http://acme.com/members/999999999>.

Basic Profile does not recognize or recommend the use of other forms of RDF container
such as Bag and Seq because they are not friendly to query. This follows standard linked
data guidance for RDF usage (e.g. http://linkeddatabook.com/editions/1.0/#htoc16).

rdfs:Container Properties

Basic Profile recommends the use of a set of standard Dublin Core properties with
containers. The subject of triples using these properties is the container itself.

Properties whose domain is rdfs:Container:

Property Occurs Range Comment

dcterms:title zero or
one rdf:XMLLiteral

A name given to the resource. Represented as rich text in
XHTML format. SHOULD include only content that is
valid inside an XHTML element.

dcterms:description zero or
one rdf:XMLLiteral

Descriptive text about resource represented as rich text in
XHTML format. SHOULD include only content that is
valid and suitable inside an XHTML <div> element.

dcterms:publisher zero or
one dcterms:Agent An entity responsible for making the Basic Profile

Container and its members available.

bp:containerPredicate exactly
one rdfs:Property The predicate of the triples whose objects define the

contents of the container.

 Retrieving non-member properties

The representation of a container that has many members will be large. When we looked
at our use cases, we saw that there were several important cases where clients needed to
access only the non-member properties of the Container. [The dcterms properties listed in
this page may not seem important enough to warrant addressing this problem, but we have
use cases that add other predicates to containers - for providing validation information and
associating SPARQL endpoints for example.] Since retrieving the whole container
representation to get this information is onerous, we were motivated to define a way to
retrieve only the non-member property values. We do this by defining for each Basic
Profile Container a corresponding resource, called the "non-member resource", whose
state is a subset of the state of the container. The non-member resource's HTTP URI can
be derived in the following way.

If the HTTP URI of the container is {url}, then the HTTP URI of the related non-member
resource is {url}?non-member-properties. The representation of {url}?non-member-
properties is identical to the representation of {url}, except that the membership triples are
missing. The subjects of the triples will still be {url} (or whatever they were in the
representation of {url}), not {url}?non-member-properties. Any server that does not

Last modified: 2 December 2011 11

support non-member-resources should return an HTTP 404-NotFound error when a non-
member-resource is requested.

This approach can be thought of as being analogous to using HTTP HEAD compared to
HTTP GET. HTTP HEAD is used to fetch the response headers for a resource as opposed
to requesting the entire representation of a resource using HTTP GET.

Here is an example:

Request:

GET /container1?non-member-properties
HOST: example.org
Accept: text/turtle

Response:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix dcterms: <http://purl.org/dc/terms/>.
@prefix bp: <http://open-services.net/ns/basicProfile#>.
<http://example.org/container1>
 a rdfs:Container;
 dcterms:title "An Basic Profile Container of Acme Resources";
 bp:containerPredicate rdfs:member;
 dcterms:publisher <http://acme.com/>.

Design motivation and background

The concept of non-member-resources has not been especially controversial, but using the
URL pattern {url}?non-member-properties to identify them has been controversial. Some
people feel it's an unacceptable intrusion into the URL space that is owned and controlled
by the server that defines {url}. A more practical objection is that servers respond
unpredictably to URLs they do not understand, especially those that have a "?" character
in them. For example, some servers will return the resource identified by the portion of the
URL that precedes the “?” and simply ignore the rest. This problem could perhaps be
mitigated by using a character other than "?" in the URL pattern. An alternative design
that was discussed uses a header field in the response header of {url} to allow the server to
control and communicate the URL of the corresponding non-member-resource - presence
or absence of the header field would let clients know whether the non-member-resource is
supported by the server. The advantages of this approach are that it does not impinge on
the server's URL space, and it works predictably for servers that do not understand the
concept of a non-member-resource. The disadvantages are that it requires two server
round-trips - a HEAD and a GET - to retrieve the non-member-resources, and it requires
the definition of a custom HTTP header, which to some people at least seems
comparatively heavyweight.

Additional considerations
Basic Profile Containers should provide guidance on:

Last modified: 2 December 2011 12

• When dcterms:modified and/or Etag changes when container membership changes
to effectively allow for caching of containers.

• Membership limitations - typically a resource will only be part of a single
container, though there may be exceptions.

Basic Profile Validation and Constraints

Basic Profile resources are RDF resources and RDF has the happy characteristic that "it
can say anything about anything". This means that in principle any resource can have any
property and there is no requirement that any two resources have the same set of
properties even if they have the same type or types. In practice, though, the properties that
are set on resources usually follow regular patterns that are dictated by the usages of those
resources. While a particular resource may have arbitrary properties, when viewed from
the perspective of a particular application or use-case, the set of properties and property
values that are appropriate for that resource in that application will often be predictable
and constrained. For example, if a server has resources that represent software products
and bugs, a client may want to know what properties software products and bugs have on
that server, for the purposes of displaying information in tabular formats, creating and
updating resources, or other purposes. The Basic Profile Validation and Constraints
specification aims to capture information about those properties and constraints.
The distinction between the resource and the use-cases it participates in is important to us.
Traditional technologies like relational databases constrain the total set of properties that
an entity can have. In Basic Profile we aim only to define the properties a resource may
have when viewed through the lens of a particular application or use-case, while retaining
the ability of the same resource to have an arbitrary set of properties to support other
applications and use-cases.

The set of properties that a resource can or will have is not necessarily linked to its type,
but exploiting the pattern where resources of the same type have the same properties is a
very traditional approach that supports the development of many useful applications.
Sometimes knowledge of types and properties for the application is hard-coded in
software, but there are many cases where it is desirable to represent this knowledge in
data. Basic Profile provides resource types called Shape and PropertyConstraint to
represent this data.

Note on relationship of Shape to other standards: Although we’re all very familiar from
relational databases and object-oriented programming with the model where the valid
properties are constrained by the type, it is not the “natural” model of RDF, nor is it the
model of the natural world. The familiar model says that if you are of type X, you will
have these properties which will have values of certain types. RDF and, to a large degree,
the natural world work the other way around – if you have these properties, you must be
of type X. We are not aware of any OWL or RDFS construct that lets you say “from the
perspective of application X, resources whose RDF type is Y will have the list of
properties Z", or of constraining the types of the values of these properties.

Last modified: 2 December 2011 13

Class: PropertyConstraint

URI: http://open-services.net/ns/basicProfile#PropertyConstraint

Properties whose domain is bp:PropertyConstraint:

Property Occurs Range Comment

rdfs:label zero or
one rdfs:Literal A human-readable name for the subject.

(from rdfs)

rdfs:comment zero or
one rdfs:Literal A description of the subject resource. (from

rdfs)

bp:constrainedProperty exactly
one rdfs:Property The URI of the predicate being constrained

bp:rangeShape zero or
one bp:Shape A bp:Shape that describes the rdfs:Class that

is range of the property

bp:allowedValue zero or
many

range of the
subject

A value allowed for the property. If there are
both bp:allowedValue elements and an
bp:AllowedValue resource, then the full-set
of allowed values is the union of both.

bp:AllowedValues zero or
many bp:AllowedValues A resource with allowed values for the

property being defined.

bp:defaultValue zero or
one range of the object A default value for the property

bp:occurs exactly
one rdfs:Resource

MUST be either http://open-
service.net/ns/basicProfile#Exactly-
one, http://open-service.net/ns/
basicProfile#Zero-or-one, http://open-
service.net/ns/ basicProfile#Zero-or-
many or http://open-service.net/ns/
basicProfile#One-or-many

bp:readOnly zero or
one Boolean

true if the property is read-only. If not set, or
set to false, then the property is writable.
Providers SHOULD declare a property read-
only when changes to the value of that
property will not be accepted on PUT.
Consumers should note that the converse does
not apply: Providers MAY reject a change to
the value of a writable property.

bp:maxSize zero or
one Integer

For String properties only, specifies
maximum characters allowed. If not set, then
there is no maximum or maximum is
specified elsewhere.

bp:valueType zero or
one rdfs:Resource For literals, see XSD Datatypes

Last modified: 2 December 2011 14

It is debatable whether we should have a separate bp:PropertyConstraint class with a
property on it called bp:constrainedProperty, or whether it would be better to use
rdfs:Property itself and simply define new predicates whose domain is rdfs:Property.
However, it is important to not use rdfs:range, because the semantics are different.

Class: bp:AllowedValues

Allowed values for one property.

URI: http://open-services.net/ns/basicProfile#AllowedValues

Properties whose domain is bp:AllowedValues:

Property Occurs Range Comment
bp:allowedValue zero or many same as range of owning property Allowed value

Class: bp:Shape

URI: http://open-services.net/ns/basicProfile#Shape

Properties whose domain is bp:Shape:

Property Occurs Range Comment

dcterms:title zero or
one rdfs:XMLLiteral Title

bp:describedClass exactly
one rdfs:Class Class described

bp:propertyConstraints zero or
one rdfs:List

The list of propertyConstraints for
properties of this Shape. The domains of
the PropertyConstraints must be
compatible with the describedClass.

Validation Semantics
Validation semantics is expressed by mapping the property and class definitions in terms
of SPARQL ASK semantics. This enables a declarative way in RDF to define the
constraints while using the existing specification SPARQL ASK.

Associating shapes and containers

It is useful to be able to specify for a container what types of members it will return and
accept and what properties it expects to be used with resources of those types. To enable
this, Basic Profile defines 2 new container properties:

Class: rdfs:Container

Properties whose domain is rdfs:Container

Last modified: 2 December 2011 15

Property Occurs Range Comment

bp:createShape zero or
many bp:Shape

One or more Shapes that provide information
on the expected data formats of resources that
can be POSTed to the container to create new
members.

bp:readShape zero or
many bp:Shape

One or more Shapes that provide information
on the expected data formats of resources that
can be found as members of the container.
Containers often add properties of their own to
POSTed and PUT resources (creation date,
modification date, creator, …) and it’s useful
for clients to know what these might be.

Conclusion
We believe that getting to a simple basic profile will enable broader adoption of Linked
Data principles for application integration. Additional development of some of the
concepts will be needed to complete such a basic profile, though the intent of this
publication is to initiate the development of such specifications that will fill this much
needed gap.

References
• Open Services for Lifecycle Collaboration (OSLC) http://open-services.net

• Linked Data at W3C http://www.w3.org/standards/semanticweb/data

• Dublin Core Metadata Initiative http://dublincore.org

• Resource Description Framework (RDF) http://www.w3.org/TR/rdf-concepts/

Authors
Martin P. Nally - Chief Technical Officer, IBM Rational Software
Steve Speicher - IBM STSM, OSLC Lead Architect

Acknowledgements

Thanks to Arthur Ryman, Arnaud le Hors and John Arwe (and others) for review,
feedback and some content.

