Structure and Relationships among requirements
Introduction

In the Feb 7th workgroup meeting, we discussed Ian’s strawgraph (well, what’s the right analogy for “strawman for RDF”) of a structure for requirements collections. There were several issues that need to be separated:

Groupings of requirements (the “requirements collection” already in OSLC RM spec is one way)

Relationships from requirement to requirement

Sequential ordering of requirements

Not a data model of any specific tool

Each requirements management tool deals with grouping and relationship in its own way, but the OSLC specification has to find some commonality. This is best done by looking at the purpose of groupings and relationships, rather than how any particular tool implements it. For example, in HP Quality Center, a folder, which plays the standard role that folders play in all rm tools, is implemented as a requirement of type folder, and “Requirement X is in Folder Y” is implemented as “Requirement X is a child of Requirement Y” with the same parent/child relationship that’s used between individual requirements. (Note that Rational Focal Point does the same thing, by the way.) This likely simplifies the implementation code (cascading delete for example.) But to the user, “requirement is in a folder” has a different meaning from “one requirement is a child of another”. For the OSLC spec to be useful for integration, it must be defined based on the expected meanings, not the “clever data model” of any one tool.

On the other hand, OSLC can’t define an “ideal data model” of requirements, since it’s purpose is to map, through provider implementation, to native api’s of common rm tools.

So we need to find some common ways that customers expect to group and relate requirements based on the familiar usage models of existing tools.
Groupings of Requirements
Here we consider reasons for grouping together requirements where the group itself is not a requirement but is a different type of resource itself.

Collection of requirements for a specific purpose, to be linked to some other ALM resource: This is the current “requirements collection”, which can be linked, for example, to a Test Plan in a QM tool (“the requirements tested by the plan”). I’m not sure it needs any additional structure, but perhaps “collections can have subcollections”. The key is that the relationship between “requirement” and “requirement collection” is definitely many to many: any particular requirement can be in many collections for different purposes. Also, being in the same collection doesn’t imply any relationship among the requirements, other than they all fit the purpose of the collection.

Folder Hierarchy: Every RM tool I know of structures the requirements in a particular Project in a Folder Hierarchy. The purpose of a folder hierarchy is different from the collection used for a specific purpose (above). Folders are used for “filing and finding” all the requirements in a project. So the folder hierarchy should not be treated as “just another requirement collection” but should be specifically called out in the OSLC spec. Most integrations that create requirements will allow the user to place the requirements created into a folder, and will need “choose a folder” code to present the folder hierarchy to the user of the consuming tool.

We should not make assumptions that there is a unique top level folder, so the structure of folders within a project is technically a “forest”. In all the tools that I know, it’s a strict hierarchy: Each requirement is in exactly one folder (or possibly some are not in any folder), and each folder is either a top level folder in the project, or a subfolder of a unique folder.
While some tools allow requirements to “float” outside the folder structure, most tools don’t. Unattended creation of requirements should allow the requirements created to be “filed” in a folder, so that they can be found later by recursively navigating the folder hierarchy.

A folder resource has a fairly simple structure: it has subfolders, and it has elements. It has a unique parent folder (see below for more discussion of this). It may have additional attributes, but likely nothing specific that OSLC should specify.
Note 1: There’s probably no particular reason why a requirement can’t be in multiple folders, but most tools I know of don’t allow that. The “hierarchy” makes is the typical way that most people are used to finding requirements. And because that’s what’s expected, integrations may need to “walk up” the hierarchy, so the unique parent of a folder should be in the OSLC representation or otherwise easily found.

Note 2: This notion of “folder” has nothing special for “requirements”. It should be considered by the OSLC Core as a common structure for all specs.

Relationships Among Requirements
We’ve defined link types from requirements to other OSLC defined resources, but we also need relationships from one requirement to another. Here’s some common ones, perhaps not all:

Trace from/trace to: The requirements are at “different levels of abstraction”; one is a requirement “because” the other one is. Used for impact analysis: when high level requirements change, what low level requirements must also change. Also used for scope management: “prove” that low level requirements are needed to provide higher level value. The relationship is many to many and thus deleting one high level requirement doesn’t delete the requirements traced to it (from it??? Interesting that this isn’t standardized!).
Parent/child: One requirement is part of another. The children don’t just clarify the meaning of the parent; the parent is itself a requirement, as are each child. Example: Parent: The user can choose the default currency to be used in the purchase order. Children: The PO can use US dollars, Euros, or Israeli Sheckels. So note that the parent can be developed and tested separately from the children (it passes if there’s a way to choose the default currency, even if the choices are different from dollars, euros and sheckels; the parent can pass, but each child independently pass or fail).

The relationship from Parent to child is one to many.

Heading/detail: Subtly different in purpose from Parent/Child, this may be actually a “grouping” rather than a requirement to requirement relationship. The heading is not a requirement itself, but is there so that when a series of requirements is “read” by a human, it helps the person to understand the requirements. This is like a heading in a “requirements document.” For example there may be a Heading “Currency Requirements” that includes the “default for PO” requirement as well as “Currency conversions will use the exchange values at 0:00 GMT”.
This may be another “grouping” rather than “requirement to requirement” relationship. The tools I know that specifically support this (DOORS, HP Quality Center) treat is as a requirement (it gets the same attributes as other requirements), but is specially “marked” to distinguish the heading from a requirement that has actual content to be developed and tested.

It’s a common construct, even when a tool doesn’t support it explicitly: Is a “Use Case” a requirement, or a heading for the detailed flows of events and other attributes?

Representation of these constructs

I propose we have three artifacts:

Requirement

Requirement Collection

Folder

Heading could be an attribute of a requirement.

Relationships between requirements could be link types.

Folder should have either separate attributes for subfolders and elements, or if they are combined in one attribute, distinguished by the subtag. Folder should have an attribute for Parent Folder.

Requirement should have an attribute for “children” and “parent requirement” (having both links facilitates multiple types of reporting), as well as an attribute for the folder it is included in.

Ordering of Requirements

This is always a problem. The need for sequential order is often when a requirement has “parts” that are ordered. For example, a Story or Use Case Flow of Events may be described as a series of steps, which are indeed ordered. The problem is that each individual step is usually not a separate requirement (Is “press Enter” a higher priority requirement than “Click on the File menu”? Can you test them separately? The question doesn’t even make sense.). But the problem with lumping all the steps together as one formatted “description” or “requirement text” attribute is that some traceability may be to specific steps. “The system will add the shipping costs” may be traced to a series of business rules about shipping costs.

This problem is one aspect of a bigger issue: We know what we mean by “the requirements” of a system, but we don’t really know what we mean by “a requirement.”

In general, I don’t think we need to represent order within the spec of an OSLC resource.
