Reportable Rest Services Interfaces
30 July 2009

Version 0.3

Bill Jones / Tack Tong

Revision History

Date Version Description Author
2/26/2009 0.1 Initial Version Bill Jones
3/19/2009 0.1 Incorporated feedback Bill Jones
from Tack and flushed out
more details. Show
markup to see the changes.
4/13/2009 0.2 Initial draft ready for Bill Jones
review.
5/26/2009 0.3 Prepared draft for review Bill Jones

Reportable REST Services External Interfaces

Table of Contents

1 [T g7 [UTox i o OSSPSR 3
2 Reportable REST Services REQUITEIMENTSccoiiieirerieirie et 3
3 General REQUITEMENTS ..ottt bbb b e e b e 5
31 Self-Contained XML: The data returned for aresource must be self-contained in the xml
(0 (o Twil 0= o | AR 5
3.2 XML Schema: An xsd schemais required for bulk datareturn.ccoceeeeienine v 6
33 Resource navigation - gradual discovery of resource url (usability feature for long and complex
(=010 Lo U 4 TSSO 7
331 Example: Using a ClearQuest Query Folder to discover a QUETYccovveeeeeeceeievienesee e, 8
4 Enterprise Scalability REQUIFEMENLS.........coviieiiiireseceeeeesee et 9
4.1 Paging fOr 1arge dataSELeceiveeeeece st e e e e renne e 9
411 Example: Paging of DEfECt atal......ccccvverererieeiere e e et sne e s 9
4.2 Support delta ETL load - only extract modified datasincelast ETLc.coocveiveininencnenieenn 11
4.3 Field selection capability to limit the volume of bulk data transferred across the network....... 11
431 Fields Argument Examplesfor field SEeCtion...........cccoiveiiinninensnese e 12
Filtering capability to select specific resources for data generationocoevevererienienenese e 16
4.3.2 Fields Argument Examples for filteringccoeoeoiriniie i 17
5 Supplemental REQUITEIMENLSooiiiiereeieie ettt se e b e e e e e b e sbe s eneeneans 20
51 Y11 p1< g1 Lo o o ST 20
5.2 Handling of illegal XIML NAMES.......cccooie ittt st s st sa et e st e 21
53 Support for Locale SPECITIC NAIMEScccovieii e sr et e e nes 21
54 DAE FOIMELS ...ttt e b et n e et b et sr et se e e e e nennenrennis 22

Page 2 of 23

Reportable REST Services External Interfaces

1 Introduction

REST services are a class of web applications deployed on Web servers. REST stands for
Representational State Transfer, meaning that a REST service returns a representation of resources
stored on the server. Although REST services can represent resources using any data format, this
specification focuses on REST using XML. XML datafrom a REST service can be streamed to a
reporting client as the data source for report generation. However, there are some issues that may
occur when attempting to create production systems using REST as an XML source for reporting.
This document defines the requirements for a new class of REST service called a Reportable
REST Service. Reportable REST Servicesimplement features that are designed to work with
data warehousing, reporting and document generation tools.

Data Warehousing is the process of extracting data from operational systems for storage
in adatawarehouse. An operational system is an application being used by individuals
to dowork. Thisincludes creating and editing objects that are later extracted from the
system and stored in the datawarehouse. Data warehousing typically extracts all

objects, or some well defined sub-set of objects stored in the operationa system. For this
reason, it isimportant for Reportable REST Services for operational systems containing
large data volumes to support the enterprise scalability requirements.

Reporting is the collection of tabular data used to create atabular report or chart. The
content of each table or chart in the report is the result of one REST GET from the REST
service. Reports may contain multiple tables, but each table is a different REST GET.
Typically reports use afilter to select a subset of the data available from the reportable
REST service.

Document Generation is the collection of data used to create documents. Documents
typically have a hierarchical organization compared to the tabular organization of reports.
This hierarchy maps well into an XML document structure. The generation of a
document may use one or more REST GETsto collect the content. The parent child
containment of an XML document may be used to create section/subsection organization
in the generated document. Each subsection may be generated based on child elementsin
an XML document, or may be based on the results of a separate REST GET. Generated
documents can vary from small filtered sub-setsto very large listings of all objectsin the
operational system.

A REST service that implements any of the Reportable REST services requirementsis aData
Service.

2 Reportable REST Services Requirements

This section outlines the Reportable REST Services requirements. Each requirement enables
different functional capabilitiesin the service and is derived from general reporting and data
warehousing solutions. The purpose of these requirements is to implement services that can be
used by the data warehousing, reporting or document generation tools to integrate with any
product without making source code changesto thetool. They are designed to allow the
configuration of these tools without special knowledge of how the individual REST services work.
Common user interface features are built on these capabilities, further simplifying the
administration tasks. 1n other words, administrators are able to focus on the business objects
presented by Reportable REST services without needing to know how to use the REST service to
get data.

Requirement Required?

Page 3 of 23

Reportable REST Services

External Interfaces

31 Self-Contained XML: The datareturned for a Mandatory
resource must be self-contained in the xml
document

32 XML Schema: An xsd schemaisrequired for bulk | Highly Recommended
data return.

33 Resource navigation - gradual discovery of Recommended

resource url (usability feature for long and
complex resource url)

4.1 Paging for large dataset Recommended for large data sets

4.2 Support delta ETL load - only extract modified Recommended for large data sets
datasince last ETL

4.3 Field selection capability to limit the volume of Recommended for complex resource
bulk data transferred across the network. models

4.4 Filtering capability to select specific resourcesfor | Recommended for large data sets

data generation.

Figurel. Reportable REST Services Requirements

Many of these requirements are defined using certain URL arguments, which are described in
sections 3 and 4. Although it is not required for Reportable REST services to implement all of
these requirements, it isimportant for them to ignore these parameters without returning errors.
The reason is that the requirements do not define a mechanism to enumerate which requirements
are supported. Thiswas done to keep the functional requirements as simple as possible.
Reportable REST clients can aways include the URL arguments regardless of whether a particular
service understands what the arguments mean.

Argument Requirements

metadata=schema 3.2

ModifiedSince=date | 4.2

fields=xpath 43,44
expression

Figure 2 - Mandatory argumentsto be accepted by every reportable REST service

The argumentsin Figure 2 must be accepted without errors by areportable REST service. The
arguments do not have to be supported, but they must not cause errors when reporting and data
warehousing solutions call the service.

Page 4 of 23

Reportable REST Services External Interfaces

3 General Requirements

3.1 Self-Contained XML: The data returned for a resource must
be self-contained in the xml document

REST URLsreturn an XML document describing the resource that the URL references. Itis
common for REST services to return amixture of XML data and URL references to other
resources. In order for datato be self-contained, it must be returned by the first URL request.
Thisis an example of aself contained XML document. Thisfollowing URL returnsalist of
defects.

http:// 10.0.0. 1: 9080/ RESTSer vi ceNane/ Def ect s

Thisisthe XML datait returns

<Def ect Li st >
<Def ect >
<i d>DEFECTO01</i d>
<Headl i ne>spelling error in |ogin screen</Headline>
<St at e>Qpened</ St at e>
<Severity>3- Aver age</ Severity>
</ Def ect >
<Def ect >
<i d>DEFECT02</i d>
<Headl i ne>sal es tax incorrect if itemdeleted from
pur chase</ Headl i ne>
<St at e>Resol ved</ St at e>
<Severity>1-Critical </ Severity>
</ Def ect >
<Def ect >
<i d>DEFECT03</i d>
<Headl i ne>cancel sal e doesn't correctly repaint
screen</ Headl i ne>
<St at e>Resol ved</ St at e>
<Severity>3- Aver age</ Severity>
</ Def ect >
</ Def ect Li st >

Figure 3 - Self-contained XML document

Thisdocument is self contained because the required data, the defect'sid, Headline, State and
Severity, are dl returned by the URL.

Thisis an example of an REST URL that does not return self-contained data:

<Def ect Li st >
<Defect href=" http://
10. 0. 0. 1: 9080/ RESTSer vi ceNane/ Def ect s/ Def ect ?i d=DEFECTO1"
/>
<Defect href=" http://
10. 0. 0. 1: 9080/ RESTSer vi ceNane/ Def ect s/ Def ect ?i d=DEFECT02"
/>
<Defect href=" http://
10. 0. 0. 1: 9080/ RESTSer vi ceNane/ Def ect s/ Def ect ?i d=DEFECT03"
/>
</ Def ect Li st >

Figure4 - XML document with external references

Page 5 of 23

Reportable REST Services External Interfaces

Each of the URL s in the document would return the id, Headline, State and Severity. Thedatais
not self-contained because it would be necessary for the report generation and metrics collection
toolsto issue these additional URLs to get all the data.

In theory, adata collection tool could traverse the references in order to collect all the information
from the REST service. However, in practice this causes data collection efficiency issues. When
collecting large volumes of data, doing http gets on large numbers of URLs would be very
inefficient. Thereisoverhead created by each HTTP GET for any application server. Finding the
resource referenced in the URL will take some amount of time, which can vary depending on the
implementation of the application server. It is much more efficient to return the datain one XML
stream rather than processing many.

For this reason, a Reportable REST service must return all required datain a self contained XML
document. Notethat it isagood practice to include URL references in the data in addition to the
required data. For example, the XML shown in Figure 3 could include the href attributes shown
in Figure 4. Inwould still be self-contained because the required data is included in the document.
Thereforeit is not necessary to HTTP GET the URL to each defect in order to generate the report
or collect the metrics.

Thereisone exceptionto thisrule. Thisisthe paging for large dataset requirement. When dataiis
paged, each page conforms to the same XML schema. The datafrom all pages could be merged
into one XML document and the document would still validate against the schema. Thisis not
true of the general case, where one document contains links to others that have different schemas.
The details of how paging works is discussed in section 4.1 Paging for large dataset.

3.2 XML Schema: An xsd schema is required for bulk data
return.

Any resource may support a metadata description of itself. Although it isnot required, itis
strongly recommended that each REST URL support returning an XML Schemafor its XML
Resource format. The schemais returned by adding the “ metadata=schema’ URL argument to
any URL.

The schema s a description of the data available for inclusion in reports or bulk data collections.
This may be different than the schemathat describes the data returned by the URL because
support for different requirements can cause subsets of the XML data to be excluded from the
XML datareturned. For example, if the field selection capability (see section 4.3) is supported by
the REST service, the data returned by the service is a subset of the data described by the XML
schema. It isimportant not to confuse the two schemas: one that describes al available data and
one that describes the data returned using specific URL argument values. Thisisa subtle but
important distinction. Since the only schema needed for reporting and metrics collection is the
metadata schema, it is the only one defined by the Reportable REST Services requirements.
REST services are free to implement URL arguments that return the schema that describes the
data returned using a specific set of arguments.

Here's an example of why the distinction between the metadata schema and regular schema are
important. Let's assume that a particular tool defines a Change Request record has one and only
one owner. The REST service returns the owner as a child XML element of the Change Request.
This child element contains multiple properties of the owner and XML attributes. For reporting
purposes, there is a difference between a schemathat states a Change Request always has 1 and
only 1 owner. If the reporting tool is guaranteed that a particular value will always be defined,
the report author's task is simplified because there is no need to define how to handle cases where
thereisno owner. Thiswill alow the report author to define afilter based on attributes of the
owner without having to consider cases where the owner does not exist.

Page 6 of 23

Reportable REST Services External Interfaces

The alternative is to modify the REST service to always list the lower bound cardinality of O for
the owner, just asit would do for every element in the schema. Thiswould destroy the lower
bound information for all resources available for reporting systems.

The following example shows the xml schemafor a URL that returns aresource representing a
Project. Note that there is no requirement for other REST services returning projects to conform
to this schema.

<xs: schema el ement For mDef aul t ="qual i fi ed"
t ar get Nanespace="http://ww. i bm coni rati onal / Exanpl e/ Proj ect " >
<xs: el ement type="Project" nane="Project"/>
<xs:conpl exType name=" Project ">
<xs:all>
<xs:el ement mnCccurs="1" maxQccurs="1" nane="Tasks">
<xs:conpl exType>
<Xs:sequence>
<xs:el ement m nCccurs="0" type="Task"
maxCccur s="unbounded" nane="Task" >
[Details omitted]
</ xs: el ement >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el emrent >
<xs: el ement mnCccurs="1" maxCccurs="1"
nane="Resour ces" >
<xs: conpl exType>
<Xs:sequence>
<xs:el ement mnCccurs="0" type="Resource"
maxQccur s="unbounded" nane="Resource"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs:el ement type="xs:string" name="Nane">
[Details omtted]
</ xs: el ement >
</xs:all>
</ xs: conpl exType>
[Additional definitions of conplex types onmtted for brevity]
</ xs: schema>

The schema defines the root Project element and the complex type for the Project. The Project
type may contain lists of tasks and resources. Thisin turn causes the definition of the Task and
Resource complex types, which is not shown. This causes theinclusion of the other complex
types referenced by those resource types.

The minOccurs and maxOccurs values of 0 and unbounded for the list of tasks and resources
reflect the unlimited number of resources each element may contain. They can also be bounded
using other values. These values are defined by the REST service generating the schema.

It is critically important that the REST services generate schemas that correctly described the
XML returned by the URL. Reporting and data warehousing solutions could generate errors if
expected data is not present.

3.3 Resource navigation - gradual discovery of resource url
(usability feature for long and complex resource url)

Resource discoverability allows Data Warehousing and reporting solutions to browse the
resources supported by a product. Discoverability starts with the root REST Service URL, or with
the URL of aknown resource. Doing an HTTP GET on the URL returns the xml representation of

Page 7 of 23

Reportable REST Services External Interfaces

that resource. This representation may include the properties of the resource and/or zero or more
child resources. Any of the child resources may include their own URL. Examples of resources
found during discovery are:

ClearQuest query: Thisisaresource that returns a set of records. It may either be a user
defined query or a pre-defined query returning all records of a given type.

RequisitePro project: Thisisthetop level RequisitePro resource. It can be used to get a
list of requirements, packages, users, groups or views, as defined by RequisitePro.

ClearCase vob: This resource contains resources that represent the files and versions
stored in the vob.

Resource discoverability allows the URL for a specific resource to be found programmatically
rather than typed in by hand, which requires extensive knowledge of the meaning of each resource
identifier in the URL, knowledge of what parameters are required and what values to provide.
Resource discoverability is analogous to navigating to a specific page on aweb site by following
links from the home page and clicking on hyperlinks.

3.3.1 Example: Using a ClearQuest Query Folder to discover a Query

This example shows how a URL to a ClearQuest query folder returns URLs to the queries and
query foldersit contains. Thisisthe URL to the Public Queriesfolder in the SAMPL Enterprise
database, deployed on the local host.

http://1 ocal host: 9080/ Dat aSer vi ces/ C ear Quest/ Ent er pri se/ SAMPL/ Pub
lic+Queries

The XML data returned by the REST service includes QueryFolder and Query resources with href
attributes. These attributes can be used to return either the contents of another query folder, or the
results of a specific query.

<Quer yFol der Version="1.0.0">
<Di spl ayNane>Publ i ¢ Queri es</ D spl ayNane>
<Quer yFol der s>
<Quer yFol der
href ="http://1 ocal host: 9080/ Dat aSer vi ces/ Cl ear Quest/ E
nt er pri se/ SAMPL/ Publ i c+Queri es/ TMrQuer i es?Type=Quer y+
Fol der"/ >

<Quer yFol der
href ="http://1 ocal host: 9080/ Dat aSer vi ces/ Cl ear Quest/ E
nt er pri se/ SAMPL/ Publ i c+Queri es/ TMtReport s?Type=Quer y+
Fol der"/ >
</ Quer yFol der s>
<Queries>
<Query
href ="http://1 ocal host: 9080/ Dat aSer vi ces/ O ear Quest/ Ente
rprise/ SAMPL/ Publ i c+Queri es/ Al | +Def ect s?Type=Query"/ >
<Query
href ="http://| ocal host: 9080/ Dat aSer vi ces/ Cl ear Quest/ Ente
rpri se/ SAMPL/ Publ i c+Queri es/ Keywor d+Sear ch?Type=Query"/ >
</ Queries>
</ Quer yFol der >

Figure5 - Clear Quest Query Folder

In this case, the caller islooking for the URL to the All Defects query, contained in the Public
Queriesfolder. Reporting and data warehousing solutions are able to use thisinformation when
users are browsing for URL s to use as the basis of reports or bulk data transfers.

Page 8 of 23

Reportable REST Services

External Interfaces

4 Enterprise Scalability Requirements

4.1 Paging for large dataset

A reportable REST service may support returning data across multiple pages. The REST service
determines the size of each page based on itsinternal implementation capabilities and performance
issues. When there are additional pages, attributes are added to the root XML element describing
how to get the next page of data. There are four XML element attributes defined for paging.

41.1

Root element attribute name

Required

Description

href

Yes

The URL to the next page. The format of this URL
and its arguments are internal to the REST services
and opaque to the caller.

rel

Yes

The valueisaways "next’. Thiswas added to be
compatible with Atom paging.

Total Pages

No

The total number of pagesin the set. Thisvalue
should only bereturned if the REST serviceisableto
efficiently computeit. Otherwiseit should be
omitted.

Page

No

The current page number. Thisvaueisonly useful to
the caller if used in conjuction with TotalPages. It
should be omitted if TotalPages is not supported.

Figure6. Root XML element paging attributes

The overall logic used for Paging is very simple. If the REST service determines that the data
requested by a URL needs to be broken up into multiple pages, it will set the attributes of the root
XML element as shown in Figure 6. Any element with a sequence of zero or more child elements
in the document may be split into multiple pages. Callers check the root element for the paging
attributes and continue to HTTP GET the next page until thereis no href attribute returned. The
content returned across all pagesis defined to be the union of all elementsin each page.

Note that there is no requirement about the number of pages, the number of records per page, data
volume of each page, or the relative size of one page compared to the other. Whether or not data
isreturned in multiple pages and what logic determine what is on each page is completely up to

the implementation of the REST service.

At first paging may seem to be at odds with requirement 3.1, Self-Contained XML: The data
returned for aresource must be self-contained in the xml document. However, paging isa
simplified case compared to supporting any reference to any XML document Asaresult,
supporting paging for large datasets does not introduce the same Ul complexity that support for

resolving any URL.

Example: Paging of Defect

data

This example shows how the list of defects shown in Figure 3 could be broken up into multiple
pages. Inarea world example there would be thousands of defects on each page. This has been

simplified to illustrate how paging works.

Page 9 of 23

Reportable REST Services External Interfaces

http://10.0.0. 1: 9080/ RESTSer vi ceNane/ Def ect s

<Def ect Li st
href =http://10.0.0.1: 9080/ RESTSer vi ceNane/ Def ect s?St art | d=DEFEC
TO3 Tot al Pages=2 Page=1 r el =next >
<Def ect >
<i d>DEFECTO01</i d>
<Headl i ne>spelling error in |ogin screen</Headline>
<St at e>Qpened</ St at e>
<Severity>3- Aver age</ Severity>
</ Def ect >
<Def ect >
<i d>DEFECT02</ i d>
<Headl i ne>sal es tax incorrect if itemdeleted from
pur chase</ Headl i ne>
<St at e>Resol ved</ St at e>
<Severity>1-Critical </ Severity>
</ Def ect >
</ Def ect Li st >

Figure7 - Page 1 of defect data

The content shown in Figure 7 is the first page of data returned by the REST service. The URL
used to get the page has no specific paging information. In fact, it isthe same URL shownin
section 3.1. Itisuptologicinthe REST service to determine when to page data and when not to.
In this example, a setting could have been changed on the configuration of the REST serviceto
causeit to pagethe data. Thekey point is that paging is opaque to the caller of areportable REST
service. The caller simply recognizes that there are additional pages and continues to get the URL
for the next page.

By examining the URL arguments on the root DefectList element in Figure 7, the caller can tell
that there are atotal of two pages, that this document is currently the first page and that the href
valueisthe URL to the next page. Note that the TotalPages and Page URL arguments are
optional. They do not have to be generated by the REST service. In this casethey are and the
caller is able to update a progress bar control using that data.

Note that the URL for the next page has a Startld argument. This argument is specific to the
implementation of the REST service and is opague to the caller. The REST service should return
whatever implementation datais required to efficiently load the next page of data. Reportable
REST services do not require any specific URL arguments for this URL and does not restrict it in
any way.

The next step for the caller isto HTTP GET the URL for the next page using the href attribute of
the root element from page 1. That datais shown in Figure 8.

http://10.0.0. 1: 9080/ RESTSer vi ceNane/ Def ect s?St art | d=DEFECT03

<Def ect Li st Tot al Pages=2 Page=2>
<Def ect >
<i d>DEFECT03</i d>
<Headl i ne>cancel sale doesn't correctly repaint
screen</ Headl i ne>
<St at e>Resol ved</ St at e>
<Severity>3- Aver age</ Severity>
</ Def ect >
</ Def ect Li st >

Figure 8 - Page 2 of defect data

Page 10 of 23

Reportable REST Services External Interfaces

The second page of data does not have an href attribute on the root DefectList element. Thisis
because it isthe last page of data. If there had been more than two pages returned, each page
would have included the URL to the next page until the last page was returned. The last page
never has an href attribute on the root element. Thisis how callers know that the page sequence
hasended. Remember that the Total Pages and Page attributes are optional and can not be relied
on for the control flow of paging by the client.

4.2 Support delta ETL load - only extract modified data since
last ETL

When executing adeltaload, only resources modified since the specified date and time should be
returned by the REST URL. It isnot required to support deltaload, and REST servicesthat do are
not required to support it for every resource URL. A REST service may implement deltaload for
aselect set of resource URLs. The goal isto implement this capability on URL s that return large
volumes of data. This allows bulk data transfers between systems to include only the data that
has changed since the last transfer.

Deltaloads are specified by including the ModifiedSince argument inaURL. Thevalueisadate
that conformsto a set of specific date formats. These are the Javaformat specifiers that define the
legal values accepted for the ModifiedSince argument. Each expects a different level of
precision.

yyyy-Mdd' T' HH: nm ss z
yyyy- M dd' T' HH: mm z
yyyy- M dd

There are two supplemental formats accepted as well that expects a space instead of a'T' between
the date and time.

yyyy-MMdd HH mm ss z
yyyy- MM dd HH mm z

If aURL does not support modified since, the argument should be ignored. The required
behavior for a Reportable REST URL that does not support deltaload isto return all of the data,
ignoring the argument completely. It is also acceptable to exclude some, but not all, of the data
that is older than the modification date. The goal hereisfor the Reportable REST service to do
the best it can to reduce the data volume. It is not always possible to do thisin all cases, either
because the modification information does not exist, or it is too inefficient to exclude it.

A REST service should never return an error if it does not support the argument. Thereisno
mechanism to describe whether or not a URL supports deltaloading. Consequently, reporting
and metrics solutions could pass a ModifiedSince argument to a URL, even if the modified since
capability is not supported.

4.3 Field selection capability to limit the volume of bulk data
transferred across the network

Thefield selection capability is defined asa URL argument named "fields" that supports a sub-set
of the XPath 2.0 specification. Thisis an expression that affects the content included by the XML
results. It isdifferent than the filtering capability, defined in section O, becauseit is not
conditional. Either all XML elements matching the expression are included or none are.

Xpath allows selection of specific nodesin an XML document. In a Reportable REST Service,
the xpath argument determines what data should be returned from the product data source. The
entire set of all possible data that could be returned is defined by the XML schema described in

Page 11 of 23

Reportable REST Services External Interfaces

section 3.2. In order to support field selection, a Reportable REST service must also support
schema generation.

Since XPath 2.0 is an extensive specification, a subset of XPath 2.0 will be supported by a
Reportable REST Service. The following table defines the sub-set of Xpath supported.

XPath 2.0 Supported Functionality Unsupported Functionality

Specification
Section
3.2 Path Only the ability to specify Axes are not supported, like descendant, parent or
Expressions | the next sub-element by ancestor.
name is supported. For
example 3.2.1.2 Node tests
Project/Tasks/ Task 3.2.2 Predicates (For example,

Pr oj ect/ Requi r enent s/ PRRequi r enent
This example would include | [1] would not be supported)

al Task elementsin the :

returned XML document. 3.2.3 Unabbreviated Syntax

Wildcards, as described in | 524 Abbreviated Syntax

3.2.1.2 are supported,
alowing expressions like:

Project/Tasks/*
Project/* I*
* /* /*

Attribute and child selection
as defined in section 3.2.1
Stepsis supported.
Attributes are selected using
either attribute::attrname or
@attrName. Child
elements are selected by
default with no qualifier or
using child::elementName.
Attribute wildcards are also
supported using either
atribute::* or @*.

Figure9 - Supported XPath functionality

The following examples demonstrate how the supported X Path functionality alows the caler to
select what datawill be returned by the reportable REST service.

4.3.1 Fields Argument Examples for field selection

The following examples demonstrate why the particular sub-set shown in Figure 9 is required.
They are al examples from the RequisitePro Reportable REST service. The examples use the
Learning Project, which defines a PR Requirement type. All of these examples use the following
URL:

http://server:port/DataServices/RequisitePro/L earning+Project+-
+Traditional/Requirements/PR

The schemafor this URL, generated by adding "?metadata=schema’, includes the complex type
for the PRRequirement. Excerpts from the schema are shown below:

Page 12 of 23

Reportable REST Services External Interfaces

<xs: conpl exType name="PRRequi r enent ">
<Xs:sequence>

[.]
<xs: el ement name="Ful | Tag" type="xs:string"/>
<xs:el ement name="Text" type="xs:string"/>
[.]
<xs:el ement name="Priority" type="xs:string"/>
<xs:el ement name="Status" type="xs:string"/>
[.]

<xs:attribute name="href" type="xs:anyURl"/>

The FullTag, Text, Priority and Status elements, along with the href attribute, are used in the
examples below to select specific content from the REST service.

4311 Example:Select FullTag, Priority and Status from Requisite Pro PRRequirements

This example demonstrates how to construct a fields argument to cause the Reportable REST
service to return only those fields. The required fields are sel ected with the following xpath
statement:

fi el ds=Proj ect/ Requi renent s/ PRRequi renent/ (Ful | Tag| Priority
| St at us)

This returns the following XML:

<Proj ect Verion="1.0.0">
<Requi r enent s>

<PRRequi r enent >
<Ful | Tag>PR1</ Ful | Tag>
<Priority>Mediunx/Priority>
<St at us>l ncor por at ed</ St at us>

</ PRRequi r enent >

<PRRequi r ement >
<Ful | Tag>PR2</ Ful | Tag>
<Priority>Low</Priority>
<St at us>Appr oved</ St at us>

</ PRRequi r enent >

<PRRequi r enent >
<Ful | Tag>PR3</ Ful | Tag>
<Priority>Mediun</Priority>
<St at us>Pr oposed</ St at us>

</ PRRequi r enent >

[..ror e requirenents]

</ Requi renents >
</ Proj ect>

This example shows how individual elements can be selected, and how selectors can be grouped
with parenthesis.

43.1.2 Example—Select the href attribute

This example adds the generation of the href attribute of each PRRequirement. The href attribute
is generated as an attribute in the schema. The added text is shown in bold. The first argument
uses the attribute axis from the X Path specification. The second URL uses the abbreviated form,
also from the specification.

Page 13 of 23

Reportable REST Services External Interfaces

fi el ds=Proj ect/ Requi renent s/ PRRequi renent/ (Ful | Tag| Priority
| Status|attribute:: href)

fiel ds=Proj ect/ Requi renent s/ PRRequi renent/ (Ful | Tag| Priority
| St at us| @nr ef)

Thisreturns the following XML, which now includes the href attributes:

<Project Verion="1.0.0">
<Requi r emrent s>

<PRRequi r enent
href ="http://server: port/DataServi ces/ Requi sitePro/ Learn
i ng+Proj ect +- +Tradi ti onal / Requi renent s/ PR/ PR1" >
<Ful | Tag>PR1</ Ful | Tag>
<Priority>Mediunx/Priority>
<St at us>l ncor por at ed</ St at us>

</ PRRequi r enent >

<PRRequi r ement
href ="http://server: port/DataServi ces/ Requi sitePro/Learn
i ng+Proj ect +-+Tradi ti onal / Requi r ement s/ PR/ PR2" >
<Ful | Tag>PR2</ Ful | Tag>
<Priority>Low</Priority>
<St at us>Appr oved</ St at us>

</ PRRequi r enent >

<PRRequi r ement
href ="http://server: port/ DataServi ces/ Requi sitePro/ Learn
i ng+Proj ect +- +Tradi ti onal / Requi r enent s/ PR/ PR3" >
<Ful | Tag>PR3</ Ful | Tag>
<Priority>Mediun</Priority>
<St at us>Pr oposed</ St at us>

</ PRRequi r enrent >

[..ore requirenents]

</ Requi renments >
</ Proj ect >

4313 Example Select all attributes using awild card

Y ou can use the wild card character ™' to select all attributes supported by context element. In
this case href isthe only attribute. Either the attribute:: axis or the short form are supported.

fiel ds=Proj ect/ Requi renent s/ PRRequi renent/attribute::*
fi el ds=Proj ect/ Requi r enent s/ PRRequi renment/ @

Thisreturns the following XML. Since the selectors for Full Tag, Priority and Status have been
removed, these properties are not generated.

<Project Verion="1.0.0">
<Requi r ement s>
<PRRequi r ement
href ="http://server: port/DataServi ces/ Requi sitePro/ Learn
i ng+Proj ect +- +Tradi ti onal / Requi rement s/ PR/ PR1"/ >
<PRRequi r enment
href="http://server: port/DataServi ces/ Requi sitePro/ Learn
i ng+Proj ect +-+Tradi ti onal / Requi rement s/ PR/ PR2"/ >
<PRRequi r enent
href ="http://server: port/DataServi ces/ Requi sitePro/ Learn
i ng+Proj ect +- +Tradi ti onal / Requi r ement s/ PR/ PR3"/ >
[..oore requirenents]
</ Requi renents >
</ Proj ect>

This XML document would include any other attributes of the PRRequirement element if they
were defined. Since href isthe only attribute supported, it is the only one returned.

Page 14 of 23

4314

4315

Reportable REST Services External Interfaces

Example: Select all PRRequirement properties

Y ou can use the wild card character *' to select all elements at a particular level in an XPath
expression. In this case, we are selecting all of the elements that are children of PRRequirement.

fi el ds=Proj ect/ Requi r enent s/ PRRequi renent / *

This returns the following XML:

<Proj ect Verion="1.0.0">
<Requi r enent s>
<PRRequi r enment
href="http://server: port/DataServi ces/ Requi sitePro/ Learn
i ng+Proj ect +- +Tradi ti onal / Requi r ement s/ PR/ PR1" >
<Nane/ >
<Ful | Tag>PR1</ Ful | Tag>
<Priority>Medi un</Priority>
<St at us>l ncor por at ed</ St at us>
<Text >The BS system shall, upon user request, display
detail ed customer information</Text>
<HasPar ent >f al se</ HasPar ent >
<HasChi | dr en>f al se</ HasChi | dr en>
[...more properites]
</ PRRequi r enent >
[...nore requirenments]
</ Requi renents >
</ Proj ect>

Since the wild card * was used in the xpath statement, all immediate child nodes of
PRRequirement were included. Note that this does not select multiple levels of elements.
Multiple level selection is shown in the next example.

Example: Multiple level wildcard selection

The wildcard character *' can be used at any location and in any combination with other selectors.
The following fields argument selects all PRRequirement children, as shown in the previous
exampl e, but also adds the children of the Document element.

fiel ds=Proj ect/ Requi r enent s/ PRRequi renent/ (*| Docunent/*)

Thisreturns the following XML:

<Proj ect Verion="1.0.0">
<Requi r ement s>
<PRRequi r enment
href="http://server: port/DataServi ces/ Requi sitePro/ Learn
i ng+Proj ect +- +Tradi ti onal / Requi r ement s/ PR/ PR1" >
<Nane/ >
<Ful | Tag>PR1</ Ful | Tag>
<Priority>Mediunx/Priority>
<St at us>l ncor por at ed</ St at us>
<Text >The BS system shall, upon user request, display
detail ed customer information</Text>
<HasPar ent >f al se</ HasPar ent >
<HasChi | dr en>f al se</ HasChi | dr en>
[...nore properites]
<Docunent >
<Ful | Pat h>C: \ Progr am
Fi | es\ | BM Rat i onal SDLC\ Requi si t ePr o\ sanpl es\ Learn
i ng_Project-Traditional\gbs product
requirenents. prd</ Ful | Pat h>

Page 15 of 23

Reportable REST Services External Interfaces

<Fi | eDat eTi me>2004- 11- 05T14: 44: 09 EST</Fi | eDat eTi ne>

<Pat h>C: \ Pr ogr am
Fi | es\ | BM Rati onal SDLC\ Requi si t ePro\ sanpl es\ Learn
ing_Project-Traditional\</Path>

<Fi | eName>gbs product requirenents</FileName>

<Ext ensi on>pr d</ Ext ensi on>

<Name>@BS Product Requirements Docunent </ Nane>

<Descri pti on>Thi s docunent contains all high |evel
product requirenments for the QBS
syst enx/ Descri pti on>

<Docurnent | D>1</ Docunent | D>

<Requi r erent sl nDocument / >

<ReqDocunent Revi si ons/ >

<ReqDocunent Type/ >

<Par ent Package/ >

</ Docunent >
[...nore properites]
</ PRRequi r emrent >
[...nore requirenents]
</ Requi renments >
</ Proj ect >

See the w3 schools tutorial at http://www.w3schools.com/xpath/ and the w3c xpath 2.0
specification at http://www.w3.org/TR/xpath20/ for further information about xpath syntax.

Filtering capability to select specific resources for data
generation

Thefilter is an expression that affects the content included by the XML results. It allowsthe
conditional inclusion of specific XML nodes based on logical expressions. The syntax is a sub-set
of xpath 2.0. The exact syntax supported is defined in this section.

The goal of supporting thisfilter information is to allow the Reportable REST service
implementer to optimize how the requested information is returned from the product data source.
This allows reporting and data warehousing solutions to optimize the functional overhead required
to return product data from the REST service.

Thefilter is specified as an X Path filter on the fields argument. Therefore, both the field selection
and the filter are specified in one single expression. The required functionality, a sub-set of the
XPath 2.0 specification, is defined in the following table.

XPath 2.0 Supported Functionality Unsupported
Specification Section Functionality
3.3 Sequence 3.3.2 Filter Expressions. A sub-set of this 3.3.1 Constructing
Expressions functionality is supported, allowing abasic filter | Segquences
to be defined for resources returned. For 3.3.3 Combinin
example, g 9

Node Sequences
Project/Tasks/Task/[State="Assigned"]

This example shows how an operational report
could select only the assigned tasks from a
project.

Literal values can be delimited by double quotes
or single quotes. If there are no whitespace

Page 16 of 23

Reportable REST Services External Interfaces

charactersin the literal, quotes can aso be
omitted. The following two expressions are also
valid.
Project/Tasks/Task/[State="Assigned’]
Project/Tasks/Task/[State=Assigned)]
3.5 Comparison 3.5.2 General Comparisons - The general 3.5.1Vaue
Expressions comparison operatorsare =, ! =, <, <=, >, and Comparisons
>= 3.5.3 Node
Comparisons
3.6 Logica Support for multiple comparisons using “and” fn:not
Expressions and“or”.
Grouping expressions using parentheses —* (*
arld l)!

Figure 10 - Supported XPath filtering functionality

4.3.2 Fields Argument Examples for filtering

The following examples demonstrate why the particular sub-set shown in Figure 10 is required.
They build on the field selection examples presented in the previous section. All are examples

from the RequisitePro REST service, use the Learning Project, and use the following URL:

http://server: port/DataServi ces/ Requi sitePro/ Lear ni ng+Pr oj ect +-
+Tradi ti onal / Requi renent s/ PR

4321 Example Filter Requisite Pro PRRequirements using Stability="High'

In this case, afilter expression has been added to the PRRequirement element, selecting only
requirements with a Stability equal to 'High'.

fiel ds=Proj ect/ Requi renents/ PRRequirenent[Stability =
"High']/(Full Tag| Priority]| Status)

Thisreturns the following XML. Since the filter was used, thisis the entire content returned by

the REST service.

<Proj ect Version="1.0.0">
<Requi r enent s>

<PRRequi r ement >
<Ful | Tag>PR1</ Ful | Tag>
<Priority>Medi un</Priority>
<St at us>l ncor por at ed</ St at us>

</ PRRequi r enent >

<PRRequi r enent >
<Ful | Tag>PR5</ Ful | Tag>
<Priority>Mediunx/Priority>
<St at us>Appr oved</ St at us>

</ PRRequi r enent >

<PRRequi r ement >
<Ful | Tag>PR7</ Ful | Tag>
<Priority>Mediunx/Priority>
<St at us>l ncor por at ed</ St at us>

Page 17 of 23

Reportable REST Services External Interfaces

</ PRRequi r enent >

<PRRequi r ement >
<Ful | Tag>PR11</ Ful | Tag>
<Priority>Mediun</Priority>
<St at us>Appr oved</ St at us>

</ PRRequi r enent >

<PRRequi r enent >
<Ful | Tag>PR13</ Ful | Tag>
<Priority>H gh</Priority>
<St at us>Appr oved</ St at us>

</ PRRequi r enent >

</ Requi r enent s>
</ Proj ect >

Note that Stability is not returned with the data, even though it is part of the filter. Thisisbecause
the XPath statement only selects Full Tag, Priority and Status. Stability could be included by
adding it to the selectors, as shown below:

fiel ds=Proj ect/ Requi renents/ PRRequirenent[Stability =
"High']/(Stability|Full Tag|Priority| Status)

Thiswould cause the Stability element to be included in the results, as shown in the excerpt
below.

<PRRequi r enent >
<Stability>H gh</Stability >
<Ful | Tag>PR1</ Ful | Tag>
<Priority>Mediunx/Priority>
<St at us>l ncor por at ed</ St at us>
</ PRRequi r emrent >

4.3.2.2 Example: Multi-level filtering

Filters may be specified at multiple levels. Thisfilter selects al the same requirements asin the
previous example, but adds an additional filter selecting all TracesTo relationships that are
suspect.

fiel ds=Proj ect/ Requi renents/ PRRequi rement [Stability =
"High']/(Full Tag| Priority| Status| TracesTo/ Rel ati onshi p[Suspect =
"true']/*)

Thisis an example of a PRRequirement returned using the fields argument. The only
relationships included are ones with a Suspect value of true.

<PRRequi r enent >
<Ful | Tag>PR1</ Ful | Tag>
<Priority>Mediun</Priority>
<St at us>l ncor por at ed</ St at us>
<TracesTo>
<Rel ati onshi p>
<Suspect >t r ue</ Suspect >
<Rel ati onshi pType>Traceabi | i t y</ Rel ati onshi pType>
<Di recti on>TracesTo</Di rection>
<Rel ati onshi pl D>{ 10C2DOCE- 84CF- 4C80- 9166-
E5A849FC821B} 16{ 10C2DOCE- 84CF- 4C80- 9166-
E5A849FC821B} 1</ Rel at i onshi pl D>
<Rel at edRequi rement />
</ Rel ati onshi p>
[...More matching rel ati onshi ps]

Page 18 of 23

4.3.2.3

4324

Reportable REST Services External Interfaces

</ TracesTo>
</ PRRequi r enent >

Thisisthe excerpt of the XML schema for this URL that defines the TracesTo relationship:

<xs: el ement maxCccurs="1" nane="TracesTo" m nCccurs="1">
<xs: conpl exType>
<Xs:sequence>
<xs: el ement maxCccur s="unbounded"” nane="Rel ati onshi p"
t ype="Rel ati onshi p" mi nCccurs="0"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >

Example: Using multi-level pathsin thefilter

The filtering examples shown up to this point show how filters can be used to limit the XML
elements included by the child elements of the element thefilter isincluded on. Up to this
point, all of the fields used in the filter have been values of the XML elements directly
contained by thefilter element. However, you can also use X Path syntax to reach deeper into
the child element hierarchy to select values. Thereisone rule that determines if thisislegal.
There must be one and only one value for the filter to evaluate. Otherwise, the expression
would be undefined.

For example, the PRRequirement has arelated document. Thisis defined in the schemaasa
xs:element with a maxOccurs of 1 and a minOccurs of 0.

<xs:el ement maxCccurs="1" nanme="Document"” type="ReqDocunent"”
m nCccur s="0"/>

Since there can never be more than one related document, it is possible to evaluate the
expression. In cases where there is no related document, there is no match.

Thisfields expression will execute the filter:

fi el ds=Proj ect/ Requi r enent s/ PRRequi r ement [Docunent / Ext ensi on=prd]/
(*| Document / *)

Other supported functionality:
Literals: Literal values can be specified using either double quotes single quotes. Either of these
expressionsisvalid:

Proj ect/ Tasks/ Task[St at e=" Assi gned"]
Pr oj ect/ Tasks/ Task[St at e=' Assi gnhed']

This capability is very useful for reporting systems that select a sub-set of the content returned by
the REST servicein areport. Support for this requirement allows the reporting system to pass a
description of the data it needs to a Reportable REST service. Thisalowsthe REST serviceto do
significantly less data loading and return the data much more efficiently.

Example: Using XML attributesin afilter

The syntax for xpath filtering also supports using attribute values. |f the RequisitePro REST
service defined Stability as an attribute instead of as a child element, the syntax compared to
example 4.3.2.1 would be very similar. The differences are shown in bold.

Page 19 of 23

Reportable REST Services External Interfaces

fiel ds=Proj ect/ Requirenents/ PRRequirenment[attribute:: Stabil
ity = "High']/(Full Tag| Priority| Status)

fiel ds=Proj ect/ Requi renents/PRRequirenent[@tability =
"High']/(Full Tag| Priority| Status)

Both forms of the attribute axis are supported, "attribute::" and "@". The XML results would be
identical, since Stability is not included in the results.

5 Supplemental Requirements

The contents of this section are recommendations for resolving problems that each reportable
REST serviceislikely to encounter. The benefit of each is explained in each section below.

5.1 Authentication

There are three common forms of authentication used by REST services. The preferred formis
forms based post because it supports Unicode characters and is the most secure.

Forms based post: The best method isto use HTTP POST to send an html formto a
REST service containing the username and password. The following HTML isan
example of aform that will post authentication information to a REST service. When
you open the HTML in abrowser, fill in the form and submit, it sends the form
containing the authentication information.

<htnm >

<head>
<meta http-equi v="Cont ent - Type" content="text/htm ; charset=UTF-

8" >

<script |anguage="javascript">

function subm t Form()

{
var form = docunent. get El ement Byl d("forni);
var url = docunent.getEl enentByld("url");
formaction = url.val ue;
formsubmt();

</script>

</ head>
<body>
<formid="fornf nethod="post">
<t abl e>

<tr>
<td>URL</td>
<td>

<i nput type="text" id="url"
val ue="http://| ocal host: 8080/ restservice/resource">

</td>

</tr>

<tr>
<t d>User name</t d>
<td>

<input type="text" nane="usernane">

</td>

</tr>

<tr>
<t d>Passwor d</t d>
<td>

Page 20 of 23

Reportable REST Services External Interfaces

<i nput type="password" name="password">
</td>
</tr>
<tr>
<td>
<i nput type="button" val ue="Submt"
ond i ck="subm t Form)" >
</td>
</tr>
</ tabl e>
</fornp
</ body>
</htm >

Basic Authentication (optional): Support of Basic Authentication will simplify testing a
reportable REST service using abrowser. The data service reads the authorization HTTP
header to process basic authentication credentials. However, since the basic
authentication standard expects the credential s to be base64 encoded, any UTF-16
characters get corrupted.

URL arguments; This method uses the username and password URL arguments for
authentication. Use of thisform of authentication is not recommended. If aREST
service implements this type of authentication, care should be taken in an implementation
not to write the value of supplied passwords to logs.

Reportable REST services that require authentication should support one or more of these
techniques.

5.2 Handling of illegal XML names

Data exposed through REST interfacesis not always designed for conversionto XML. Asa
result, the product data used to define element names may contain illegal XML element characters.
The REST service needs to apply renaming logic to convert namesinto valid XML. In the event
that the true name does not match the XML element name, annotations should be added to the
XML Schemathat is used to determine the actual name of thefield. The annotations are only
added if the element name containsillegal characters.

Thisis an example of an element declaration with a corrected label annotation.

<xs:el ement type="xs:integer" name="Weight _|bs ">
<xs:annot ati on>
<xs: appi nf o>
<l abel >Wei ght (I bs) </ | abel >
</ xs: appi nf 0>
</ xs:annot ati on>
</ xs: el emrent >

Figure11. Application annotationsused to handleillegal XML names

By providing the original name in the metadata schema, reporting and data warehousing solutions
have the data needed to correctly display names that are not legal XML values.

5.3 Support for Locale specific names

Reportable REST services designed for use by multiple locales need a technique to return
localized names, such as the name of a property or aresource. It isnot desirable to rename XML
elements for different locales because this affects the interoperability of the XML between clients
using those locales. Instead, the strategy is to use application specific annotations in the XML
schema. Infact, the same annotations are used asin section 5.2. The only difference isthat the
label isthe nameisin the locale of the requestor of the XML schema.

Page 21 of 23

Reportable REST Services External Interfaces

It isimportant to return names in the locale of the requester rather than using the locale of the
server. Thisalows reporting and data warehousing solutions to get names in the language
settings of the user's computer rather than the language settings of the server. Of courseg, it also
requires installing the required language trandlations for the REST service on the server. The
REST service should also default to the language settings of the server if the requested language is
not installed.

The XML schemais always the same regardless of either server or requester locale. The
difference isthe values returned in the annotations. Figure 12 shows what the annotation might
contain for French locales for the "Weight (1bs)" property.

<xs:el ement type="xs:integer" name="Wight_|bs ">
<xs:annotati on>
<xs: appi nf o>
<l abel >Poi ds (I bs) </ | abel >
</ xs: appi nf o>
</ xs: annot at i on>
</ xs: el emrent >

Figure 12. Returning locale specific namesin the XML schema

Support for this requirement provides a mechanism to return locale specific names in the metadata
schema without affecting the XML data generated by the REST service.

5.4 Date Formats

Standardization of date formats retuned in XML data makes the processing of the datasimpler. In
many cases it isimpossible to distinguish between two different date formats using the string
representation of the datesonly. For example, consider the following date formats.

MM-DD-YY
YY-MM-DD

What date valueis 03-04-05? Since it could be either of the date formats, this could either be
March 4, 2005 or April 5, 2003. Unless the caller has specific knowledge of what format the date
isreturned in, it isimpossible to parse dates returned by the service. Therefore, the task of
interpreting date values in reporting and data warehousing solutionsis simpler if the possible date
formats are unique and standard across all services.

All dates are formatted in accordance with the | SO 8601:2004 standard. The formats returned are:
YYYY-MM-DD
YYYY-MM-DDThh:mm z
YYYY-MM-DDThh:mm:ss z
Where:
YYYY —Theyear in the Gregorian calendar.
MM — The month of the year between 01 (January) and 12 (December).
DD —The day of the month between 01 and 31.
hh — The number of complete hours that have passed since midnight, between 00 and 23.
mm — The number of complete minutes since the last hour, between 00 and 59.

ss— The number of complete seconds since the start of the last minute, between 00 and
59.

Note: Thejavaformat strings accepted by the java.text.SimpleDateFormat class are:

Page 22 of 23

Reportable REST Services External Interfaces
"yyyy- MM dd"

"yyyy- M dd’ T HH: mm z*"
"yyyy-MMdd’ T" HH: mm ss z"

Page 23 of 23

