

Organisers today

- Workgroup lead: Rainer Ersch, Siemens
- Coordinator: Gray Bachelor, IBM

Today's agenda

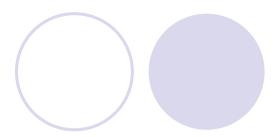
- Roll call and brief introductions welcome new members
- Objective for today's meeting Discuss progress with the investigation of defining a reference context for SE Scenario #1
- Overview and discussion on representation of context and implementation based upon STEP
- Discuss traceability scenarios within SE

Today's objectives

- To continue to discuss the product context and implementation based upon STEP
- To agree an approach to define an initial resource definition for context and implementation

A note about today's materials

 We are still exploring the materials available in the public domain

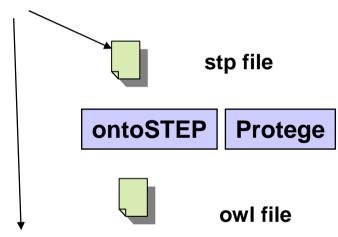

Summary of the approach

- Our scenario #1 provides the basis for exploring the coverage of the existing OSLC Specs
- We identified two actions as typical of the need to trace product and system context and implementation
 - a4 Locate requirements in change request context
 - a7 Locate Reusable Implementation to Satisfy Change?
- These actions require that we identify means to represent
 - Requirements as configured text, documents and models
 - O Context and implementation as configured structures, meta-data and models
 - Relationships between Requirements, Context and Implementations
- We propose initially to define a reference or boundary representation of product and/or system to use to evaluate the existing Specs (resources and services)
- There is not a single dominant representation of product and system structure to use as a reference
- We agreed to explore the Standard for the Exchange of Product model data (STEP)
 - Based upon ISO 10303 and is meant for product data exchange between tools
 - has a modular construction applied in multiple Application Protocols with significant industry support
 - has a proven and flexible core construct of Product, Product_version, Product_view_definition
- We agreed to explore and apply the SysML SUV example to support our investigation

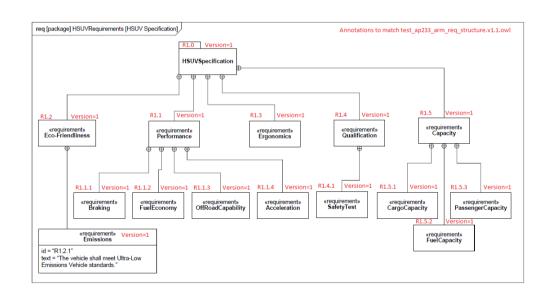
Progress made

- Initial identification of relevant assets and information in the public domain
- Production of sample data from the SUV SysML example (Requirements diagram)
 - STEP representation (.stp file)
 - OWL representation (.owl file)
- Exploration of SUV Requirements representation in OWL
 - STEP file
 - ontoSTEP
 - Protege

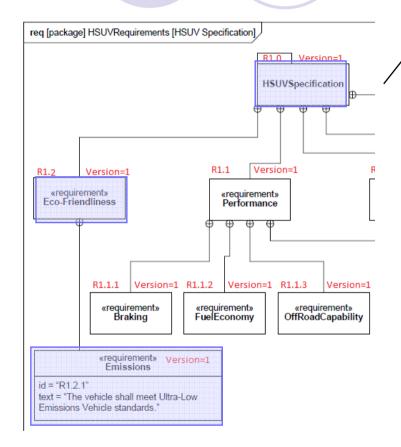
What to work with?


AVAILABLE

SUV example SysML diagrams **Requirements Diagram Block Diagrams**


ISSUES

- No product identity & structure
- No versions


Rhapsody

xmi path not explored yet

STEP sample

Each STEP element has an identity

#10=REQUIREMENT('R1.0','HSUVSpecification','Test of HSUV Specification instantiation');

#20=REQUIREMENT_VERSION('1','HSUVSpecification version',#10);

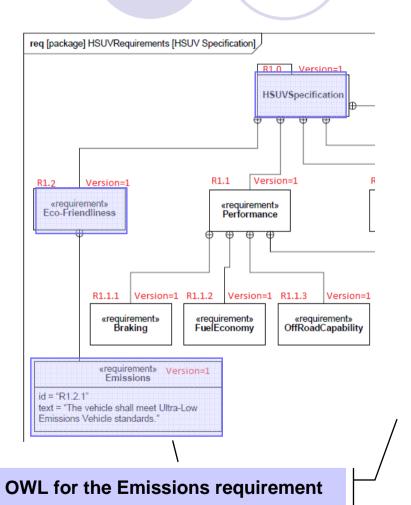
#30=REQUIREMENT_VIEW_DEFINITION('1','HSUVSpecification View Definition','",#40,(),#20);

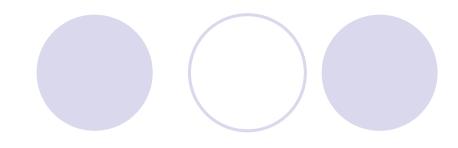
#40=VIEW_DEFINITION_CONTEXT('Requirements','Concept Definition',");

#50=REQUIREMENT('R1.2','Eco-Friendliness','Eco-Friendliness');

#60=REQUIREMENT_VERSION('1','Eco-Friendliness version',#50);

#70=REQUIREMENT_VIEW_DEFINITION('1','Eco-Friendliness View Definition',",#40,(),#60);

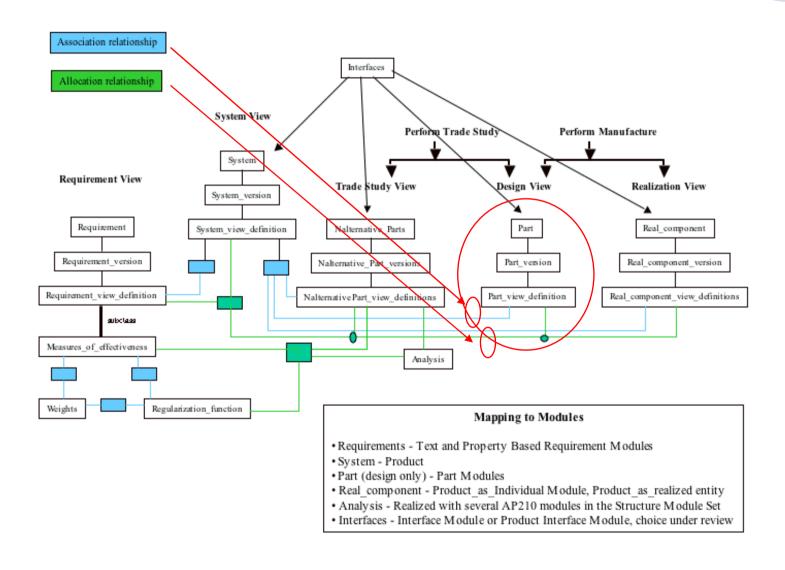

#80=REQUIREMENT_COLLECTION_RELATIONSHIP('R1.0-2','isComposedOf','Points to member requirement of HSUVSpecification',#30,#70);


#90=REQUIREMENT('R1.2.1','Emissions','The vehicle shall meet Ultra-Low Emissions Vehicle standards.');

#100=REQUIREMENT_VERSION('1','Emissions version',#90);

#110=REQUIREMENT_VIEW_DEFINITION('1', 'Emissions View Definition','',#40,(),#100);

OWL example




```
<!-- http://www.iso.org/TC184/SC4/WG12/test_ap233_arm_req_structure#i110 -->
                                                                                                                 OWL for the Emissions requirement
 <owl:Thing rdf:about="#i110">
   <rdf:type rdf:resource="&ap233_systems_engineering_arm_lf;product_view_definition"/>
   <rdf:type rdf:resource="&ap233_systems_engineering_arm_lf;requirement_view_definition"/>
                                                                                                               STEP Application Reference Models (ARM)
   <ap233_systems_engineering_arm_lf:requirement_view_definition_has_defined_version rdf:resource="#i100"/>
   <ap233_systems_engineering_arm_lf:product_view_definition_has_defined_version rdf:resource="#i100"/>
   <ap233_systems_engineering_arm_lf:product_view_definition_has_additional_characterization rdf:resource="#i110_additional_characterization"/>
   <ap233 systems engineering arm lf:product view definition has id rdf:resource="#i110 id"/>
   <ap233 systems engineering arm lf:product view definition has name rdf:resource="#i110 name"/>
   <ap233_systems_engineering_arm_lf:product_view_definition_has_initial_context rdf:resource="#i40"/>
 </owl:Thing>
<!-- http://www.iso.org/TC184/SC4/WG12/test_ap233_arm_req_structure#i110_additional_characterization -->
 <owl:Thing rdf:about="#i110 additional characterization">
    <rdf:type rdf:resource="&ap233_systems_engineering_arm_lf;string"/>
    <ap233_systems_engineering_arm_lf:to_string rdf:datatype="&xsd;string"></ap233_systems_engineering_arm_lf:to_string>
 </owl:Thing>
 <!-- http://www.iso.org/TC184/SC4/WG12/test_ap233_arm_req_structure#i110_id -->
 <ap233_systems_engineering_arm_lf:string rdf:about="#i110_id">
    <rdf:type rdf:resource="&owl;Thing"/>
    <ap233 systems engineering arm lf:to string rdf:datatype="&xsd;string">1</ap233 systems engineering arm lf:to string>
 </ap233_systems_engineering_arm_lf:string>
 <!-- http://www.iso.org/TC184/SC4/WG12/test ap233 arm reg structure#i110 name -->
 <owl:Thing rdf:about="#i110_name">
    <rdf:type rdf:resource="&ap233_systems_engineering_arm_lf;string"/>
    <ap233_systems_engineering_arm_lf:to_string rdf:datatype="&xsd;string"
      >Emissions View Definition</ap233_systems_engineering_arm_lf:to_string>
 </owl:Thing>
```

Sept 7th 2010 V0.3

11

Propose to define a set of resources based upon the core Product / Part structure

...and add versions into the Hybrid SUV SysML model Block Diagram

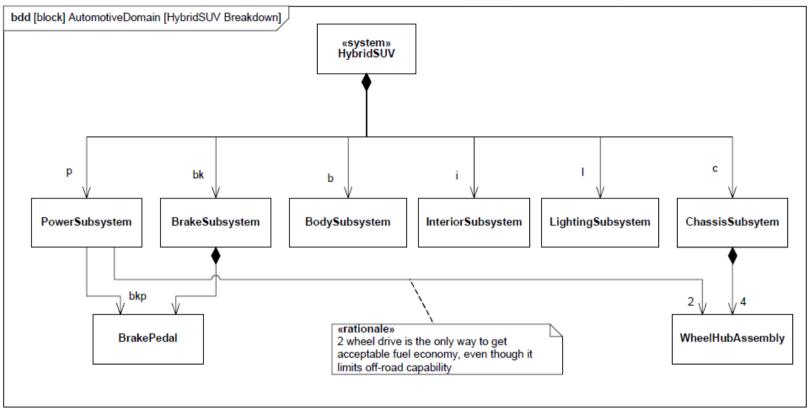
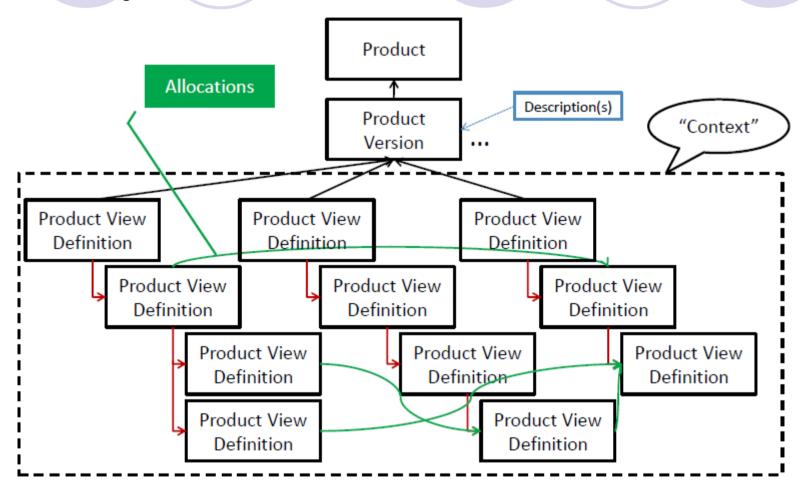


Figure 16 - Defining Structure of the Hybrid SUV System (Block Definition Diagram)

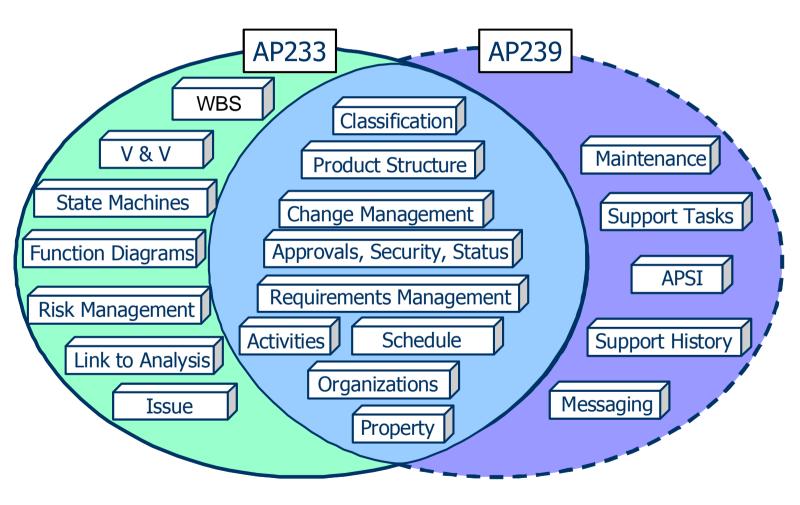

Discussion topics

- How to represent the context and implementation in the Scenario #1?
- What aspect of STEP to focus on ?
- What representation is most useful?
 - Is OWL adequate for this next stage ?
- What work has been done that we can build off?
 - Additional work out there in the industry? SysML / AP233? STEP OWL?
 - RM Spec
 - Traceability scenarios
- How to use the SUV model as an example?
 - Versions
 - SysML Block diagram
- How to communicate the analysis and reasoning?
 - Resources
 - Relationships
 - Services

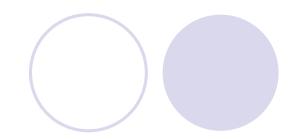
Supporting information

STEP Key Product Structure Concepts

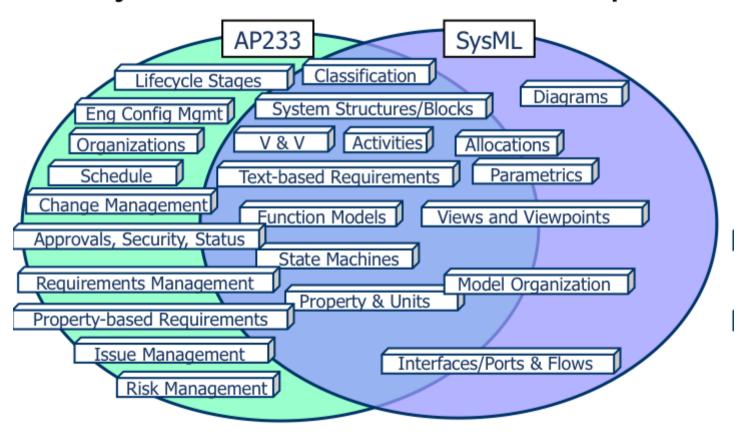
Acknowledgement: Mike Loeffler


STEP Key Product Structure Concepts

- Acknowledgement: Mike Loeffler
- Product (also known as "Item") is root of whole structure, can represent a single product design or a whole family or product line, has minimal identification metadata
- Each Product Version (there can be many) can have both Product View Definition(s) and one or more Descriptions (files or other data representations)
- Product View Definition (or DDID) is the "Context", the root of the breakdown structure that describes the internal construction of the Product Version
- Product View Definition can be multiple, each has a qualification of what type of view it represents (i.e. mechanical, electrical, hydraulic, software, etc.)
- Each different Product View Definition can have a completely different structure as appropriate to describe the viewpoint it represents
- Allocations, traces, connectivity definitions and other cross cutting relationships can be made within and between the different views
- Product View Definitions consist of pointers to the child Product View Definition(s) that make up the top level Product Version being defined; the assembly relationships are configured (turned on or off) by variant and effectivity functions


ISO 10303 Relevant STEP standard

- AP 203, Configuration controlled 3D designs of mechanical parts and assemblies.
- AP 210, Electronic assembly, interconnect and packaging design
- AP212, Electrotechnical Design and Installation
- AP 214, Core data for automotive mechanical design processes
- AP 233, Systems engineering data representation
- AP 239, Product life cycle support (aka Product Lifecycle Support (PLCS)
- PDM Schema. Intersection between AP-203 and AP-214 from an initiative of PDES Inc. and ProSTEP
 - http://pdesinc.aticorp.org/
 - http://www.prostep.com/?L=1


Where to start? AP239 and AP233 overlaps

Where to start? SysML and AP233 overlaps

SysML/AP233 Data Overlaps

20

AP233 positioning (source DOD

AP233 - SysML - OWL Languages with Common Semantics

P R E S E N T A T I

Ν

OWL Ontology Modeling Language

SysML
Graphical Modeling
Language

STEP AP233
Information Modeling
Language

R

Ε

Р

R

E S E

Ν

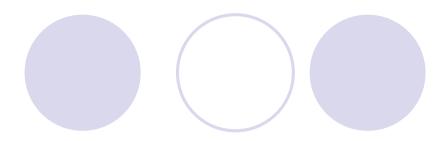
Ν

Sept 7th 2010 V0.3

SysML > AP233 Mapping

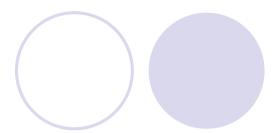
Blocks

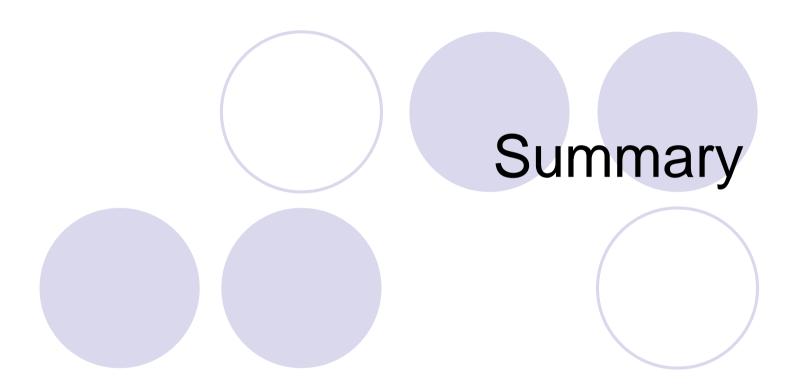
SysML	AP233
Block	System _view_definition → System_version → System
Composition Association	Assembly_component_relationship relating two System_view_definitions
Generalization	View_definition_relationship + Classification ('Generalization')
Part/Part Definition	View_definition_relationship
Nested Part	Component_upper_level_identification
Multiplicity	Next_assembly_usage.quantity
Connector	Interface_connection
Port/Port Definition	Interface_connector
Delegation Port	Hierarchical_interface_connector


http://www.omgwiki.org/OMGSysML/doku.php?id=sysml-ap233:mapping_between_sysml_and_ap233

+ Value-properties, Constraints, Activities, State-machines, Use-cases Requirements, Packages, metadata, Sept 7th 2010 V0.3

Using SysML and STEP/AP214/233


- STEP has implemented EXPRESS as a representation
- SysML > xmi exists
 - http://www.omg.org/spec/SysML/20080501/SysMLprofile.xmi
- SysML / AP233 mapping incomplete
 - Requirements, System
 - http://www.omgwiki.org/OMGSysML/doku.php?id=sysml-ap233:mapping_between_sysml_and_ap233
- O Preferred approach ?
 - SysML > xmi
 - Xmi > AP233 represented in xml


Next meeting

- Propose
 - Spec alignment working meeting
 - Sept 21st 11am Eastern

Any other business?

