OSLC PLM Workgroup

Working meeting Aug 24th 2010 open-services.net _{V0.2}

Organisers today

Workgroup lead: Rainer Ersch, Siemens

Coordinator: Gray Bachelor, IBM

Today's agenda

- Roll call and brief introductions welcome new members
- Objective for today's meeting Discuss support for the traceability scenarios within the SE Scenario #1
- Overview and discussion on representation of context and implementation using core of STEP
- Discuss traceability scenarios within SE Scenario #1
- Overview and discussion representing STEP as resources
- Next steps for working with the OSLC SPECS
- Dates of next meetings- proposed a Sept 7th and Sept 21st
- AOB
- Summary and close

Today's objectives

- 1. To discuss the product context and implementation based upon STEP
- 2. To agree an approach to define an initial resource definition for context and implementation

A note about today's materials

For discussion

- These materials may not fully represent the state of the art
- Gathered from public web sources

Discussion for today

- How to represent the context and implementation in the Scenario #1 ?
- What aspect of STEP to focus on ?
- Which standard is most useful ?
- What representation is most useful ?
- What work has been done that we can build off ?
- What do we need to achieve ?
 - Using RDF ?
 - Using OWL ?
- How to use the SUV model as an example ?
- What about the traceability scenarios ?

STEP Key Product Structure Concepts

Acknowledgement: Mike Loeffler

STEP Key Product Structure Concepts

- Acknowledgement: Mike Loeffler
- Product (also known as "Item") is root of whole structure, can represent a single product design or a whole family or product line, has minimal identification metadata
- Each Product Version (there can be many) can have both Product View Definition(s) and one or more Descriptions (files or other data representations)
- Product View Definition (or DDID) is the "Context", the root of the breakdown structure that describes the internal construction of the Product Version
- Product View Definition can be multiple, each has a qualification of what type of view it represents (i.e. mechanical, electrical, hydraulic, software, etc.)
- Each different Product View Definition can have a completely different structure as appropriate to describe the viewpoint it represents
- Allocations, traces, connectivity definitions and other cross cutting relationships can be made within and between the different views
- Product View Definitions consist of pointers to the child Product View Definition(s) that make up the top level Product Version being defined; the assembly relationships are configured (turned on or off) by variant and effectivity functions

ISO 10303 Relevant STEP standard

- AP 203, Configuration controlled 3D designs of mechanical parts and assemblies.
- AP 210, Electronic assembly, interconnect and packaging design
- AP212, *Electrotechnical Design and Installation*
- AP 214, Core data for automotive mechanical design processes
- AP 233, Systems engineering data representation
- AP 239, Product life cycle support (aka Product Lifecycle Support (PLCS)
- PDM Schema. Intersection between AP-203 and AP-214 from an initiative of PDES Inc. and ProSTEP
 - <u>http://pdesinc.aticorp.org/</u>
 - http://www.prostep.com/?L=1

Where to start ? AP239 and AP233 overlaps

Aug 24th 2010 V0.1

http://www.omgwiki.org/OMGSysML/doku.php?id=sysml-ap233:mapping_between_sysml_and_ap233

Traceability enabled by Interfacing Core Capabilities (AP233.org)

What is the core construct? For example from AP233

- SCHEMA Ap233_systems_engineering_arm_excerpt;
- ENTITY Product;
- id : STRING;
- name : STRING;
- description : OPTIONAL STRING;
- END_ENTITY;
- ENTITY Product_version;
- id : STRING;
- description : OPTIONAL STRING;
- of_product : Product;
- END_ENTITY;
- ENTITY Product_view_definition;
- id : OPTIONAL STRING;
- name : OPTIONAL STRING;
- additional_characterization : OPTIONAL STRING;
- initial_context : View_definition_context;
- additional_contexts : SET [0:?] OF View_definition_context;
- defined_version : Product_version;
- WHERE
- WR1: NOT (initial_context IN additional_contexts);
- WR2: EXISTS(id) OR (TYPEOF(SELF\Product_view_definition) <> TYPEOF(SELF));
- END_ENTITY;

SysML > AP233 Mapping

Blocks

SysML	AP233
Block	System _view_definition \rightarrow System_version \rightarrow System
Composition Association	Assembly_component_relationship relating two System_view_definitions
Generalization	View_definition_relationship + Classification ('Generalization')
Part/Part Definition	View_definition_relationship
Nested Part	Component_upper_level_identification
Multiplicity	Next_assembly_usage.quantity
Connector	Interface_connection
Port/Port Definition	Interface_connector
Delegation Port	Hierarchical_interface_connector

http://www.omgwiki.org/OMGSysML/doku.php?id=sysml-ap233:mapping_between_sysml_and_ap233

+ Value-properties, Constraints, Activities, State-machines, Use-cases Requirements, Packages, metadata, Aug 24th 2010 V0.1

Using SysML and STEP/AP214/233

- STEP has implemented EXPRESS as a representation
- SysML > xmi exists
 - http://www.omg.org/spec/SysML/20080501/SysMLprofile.xmi
- SysML / AP233 mapping incomplete
 - Requirements, System
 - http://www.omgwiki.org/OMGSysML/doku.php?id=sysmlap233:mapping_between_sysml_and_ap233
- Preferred approach ?
 - SysML > xmi
 - Xmi > AP233 represented in xml

An example to use? Hybrid SUV SysML model

Figure 16 - Defining Structure of the Hybrid SUV System (Block Definition Diagram)

http://www.sysml.org/ http://www.omg.org/cgi-bin/doc?formal/2010-01-01 Aug 24th 2010 V0.1

....SUV Power Subsystem

Figure 18 - Defining Structure of Power Subsystem (Block Definition Diagram)

http://www.sysml.org/ http://www.omg.org/cgi-bin/doc?formal/2010-01-01 Aug 24th 2010 V0.1

Next meeting

Propose

- OPLM Resource definition working session
 - Sept 7th
- OSpec alignment working meeting
 - Sept 21st

Any other business ?

Thank you rainer.ersch@siemens.com gray_bachelor@uk.ibm.com