
Designing a core specification for OSLC
February 24, 2010
Dave Johnson - IBM / Rational

Disclaimer: The core specification described herein is a proposal & does not have OSLC approval.

Wednesday, February 24, 2010

2

The need for a core specification
OSLC Work Groups (WGs) are:

– Creating their own RESTful protocols
– Designing their own XML, RDF/XML and JSON representations
– Inventing new patterns for creating and managing resources
– Completing and “converging” 1.0 specs
– Planning and designing 2.0 specs

Those are mostly good things
– We’ve learned a lot in the process of developing some solid 1.0 specs
– Good progress on 2.0 thinking around query, resource shapes, links

Now we need to:
– Ensure consistency and architectural integrity across specs
– Build a core spec that defines our REST protocol and representations
– Enable WGs to focus on data model and domain specific operations

Wednesday, February 24, 2010

Workgroup pain points

Writing too much boiler-plate REST API spec text
Have to know too much about RDF/XML, Atom, JSON

– Too much discussion of representation

Have to design and specify (or cut-and-paste)
– RDF, JSON and other representations
– Query syntax, semantics
– Service documents
– Delegated UI

Have to invent new patterns for things like:
– Resource Shapes
– Modeling Links
– Partial Update
– File and File Descriptor
– Hierarchical Web Content
– Resources with huge numbers of properties

3

Wednesday, February 24, 2010

OSLC core spec design goals
Stay true to the WWW and REST

– e.g. focus on resources, uniform interface, stable/opaque URIs

Be as RDF friendly as possible
– e.g. focus on properties, provide RDF representations

Balance tension between consistency & flexibility
– Want consistency but don’t want to unduly constrain innovation

Keep it simple
– e.g. minimize new concepts introduced & specifications referenced

Yet still manage to please everybody
– e.g. schemas for resource creation, XML and JSON representations

4

Wednesday, February 24, 2010

OSLC core spec approach

Simple model
– Everything is a resource with property values

Rules for generating representations
based on that simple model
– RDF/XML required
– Turtle, JSON, Atom allowed

5

Wednesday, February 24, 2010

6

OSLC core spec approach

Query
Resource

Creation
Resource

 OSLC
Resource

links to

links to

OSLC
Resource
 ResourceService

Resource

links to

may
contain

PropertyCreation
Resource

link to
next page

Creation
Resource

links to other
resources

Resource
Shape

Resource

links to

Query
Resource

Query
Resource

Also need three types of resources

Wednesday, February 24, 2010

7

Proposed core spec outline

Overview
OSLC Resources
Resource Shape Resources
Service Resources
Query Resources
Creation Resources
Representations
Authentication
OSLC Common Patterns

Wednesday, February 24, 2010

8

OSLC Resource

A resource that contains properties values meaningful
to an OSLC Service.

Normal rules of HTTP should apply:
– Creation - POST (see also Creation Resource)
– Retrieve - GET (see also Query Resource)
– Update - PUT
– Delete - DELETE

Wednesday, February 24, 2010

9

Resource Shape Resources

 A resource that describes a Resource Shape, listing the properties
that are expected to be in resources of one specific shape.

 A set of Property definitions each with properties:
– oslc:predicate (URI, Required) - predicate of property
– oslc:datatype (URI, Required, Multi-valued) - datatype of property. May be String,

Integer, Number, Boolean, or URI
– oslc:minOccurs (integer, optional, default 0) - minimum number of instances allowed
– oslc:maxOccurs (integer, optional, default is no limit) - maximum number of instances

allowed
– dc:title (String, optional) - title of property
– dc:description (String, optional) - description of property
– oslc:allowedValue (String, optional, multiple allowed) - value allowed for property
– oslc:defaultValue (String, optional) - default value for property
– oslc:maxSize (integer, optional, default is no limit) - maximum length of string

property in characters
– oslc:readOnly (boolean, optional, default is false) - true if property is read-only

 Spec provides set of common property definitions

Wednesday, February 24, 2010

10

Service Resources

Resource that describes a set of OSLC Resources that
together form an OSLC Service.

Service can provide one or more:
– Query Resources
– Creation Resources
– Resource Shapes

Wednesday, February 24, 2010

11

Creation Resources

Resources can be created via normal HTTP POST
– to a creation resource

Response must include Location of created resource
Response may include OSLC representation

Wednesday, February 24, 2010

12

Query Resources

Conceptually a Query Resource is a family of resources
all made available at the same base URI.

Each resource in the family represents a set of
resources that match a query criteria specified in the
URI by the client.

Using Query Syntax defined in CM 1.0 spec

Wednesday, February 24, 2010

OSLC Common Patterns

Things that may not be suitable for cementing into a
specification yet, but we’re ready to offer guidance

Modeling Links
Partial Update
File & File Descriptor
Hierarchical Web Content
Delegated UI and Pickers
Compact Rendering

13

Wednesday, February 24, 2010

14

OSLC Representations

Because we have used a simple conceptual model of
resources with properties, we can define simple rules
for generating representations

For the sake of inter-op OSLC Services MUST support
RDF/XML representations of all resources

They MAY support other representations and core spec
will include rules for creating these:
– Turtle
– JSON
– Atom

Wednesday, February 24, 2010

Next steps?

Surface Core Spec draft/straw-man on Wiki
Quickly merge in ongoing work on:

– Query Syntax
– Resource Shapes

Review & Discuss Core Spec draft/straw-man
Use mailing list and WG meetings for discussion
Work towards convergence

15

Wednesday, February 24, 2010

