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The need for a core specification
OSLC Work Groups (WGs) are:

– Creating their own RESTful protocols
– Designing their own XML, RDF/XML and JSON representations
– Inventing new patterns for creating and managing resources
– Completing and “converging” 1.0 specs
– Planning and designing 2.0 specs

Those are mostly good things
– We’ve learned a lot in the process of developing some solid 1.0 specs
– Good progress on 2.0 thinking around query, resource shapes, links

Now we need to:
– Ensure consistency and architectural integrity across specs
– Build a core spec that defines our REST protocol and representations
– Enable WGs to focus on data model and domain specific operations
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Workgroup pain points

Writing too much boiler-plate REST API spec text
Have to know too much about RDF/XML, Atom, JSON

– Too much discussion of representation

Have to design and specify (or cut-and-paste)
– RDF, JSON and other representations
– Query syntax, semantics
– Service documents
– Delegated UI

Have to invent new patterns for things like:
– Resource Shapes
– Modeling Links
– Partial Update 
– File and File Descriptor
– Hierarchical Web Content
– Resources with huge numbers of properties
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OSLC core spec design goals
Stay true to the WWW and REST

– e.g. focus on resources, uniform interface, stable/opaque URIs

Be as RDF friendly as possible
– e.g. focus on properties, provide RDF representations

Balance tension between consistency & flexibility
– Want consistency but don’t want to unduly constrain innovation

Keep it simple
– e.g. minimize new concepts introduced & specifications referenced

Yet still manage to please everybody
– e.g. schemas for resource creation, XML and JSON representations
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OSLC core spec approach

Simple model
– Everything is a resource with property values

Rules for generating representations 
based on that simple model
– RDF/XML required
– Turtle, JSON, Atom allowed
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OSLC core spec approach
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Also need three types of resources
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Proposed core spec outline

Overview
OSLC Resources 
Resource Shape Resources 
Service Resources
Query Resources
Creation Resources
Representations
Authentication
OSLC Common Patterns

Wednesday, February 24, 2010



8

OSLC Resource

A resource that contains properties values meaningful 
to an OSLC Service.

Normal rules of HTTP should apply:
– Creation - POST (see also Creation Resource)
– Retrieve - GET (see also Query Resource)
– Update - PUT
– Delete - DELETE
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Resource Shape Resources

 A resource that describes a Resource Shape, listing the properties 
that are expected to be in resources of one specific shape.

 A set of Property definitions each with properties:
– oslc:predicate (URI, Required) - predicate of property 
– oslc:datatype (URI, Required, Multi-valued) - datatype of property. May be String, 

Integer, Number, Boolean, or URI 
– oslc:minOccurs (integer, optional, default 0) - minimum number of instances allowed
– oslc:maxOccurs (integer, optional, default is no limit) - maximum number of instances 

allowed
– dc:title (String, optional) - title of property
– dc:description (String, optional) - description of property
– oslc:allowedValue (String, optional, multiple allowed) - value allowed for property
– oslc:defaultValue (String, optional) - default value for property 
– oslc:maxSize (integer, optional, default is no limit) - maximum length of string 

property in characters
– oslc:readOnly (boolean, optional, default is false) - true if property is read-only

 Spec provides set of common property definitions
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Service Resources

Resource that describes a set of OSLC Resources that 
together form an OSLC Service.

Service can provide one or more:
– Query Resources
– Creation Resources
– Resource Shapes
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Creation Resources

Resources can be created via normal HTTP POST
– to a creation resource

Response must include Location of created resource
Response may include OSLC representation

Wednesday, February 24, 2010



12

Query Resources

Conceptually a Query Resource is a family of resources 
all made available at the same base URI.

Each resource in the family represents a set of 
resources that match a query criteria specified in the 
URI by the client. 

Using Query Syntax defined in CM 1.0 spec
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OSLC Common Patterns

Things that may not be suitable for cementing into a 
specification yet, but we’re ready to offer guidance

Modeling Links
Partial Update
File & File Descriptor
Hierarchical Web Content
Delegated UI and Pickers
Compact Rendering
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OSLC Representations

Because we have used a simple conceptual model of 
resources with properties, we can define simple rules 
for generating representations

For the sake of inter-op OSLC Services MUST support 
RDF/XML representations of all resources

They MAY support other representations and core spec 
will include rules for creating these:
– Turtle
– JSON
– Atom
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Next steps?

Surface Core Spec draft/straw-man on Wiki
Quickly merge in ongoing work on:

– Query Syntax
– Resource Shapes

Review & Discuss Core Spec draft/straw-man
Use mailing list and WG meetings for discussion
Work towards convergence 
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