Designing a core specification for OSLC

February 24, 2010
Dave Johnson - IBM / Rational

Disclaimer: The core specification described herein is a proposal & does not have OSLC approval.

Wednesday, February 24, 2010



» OSLC Work Groups (WGs) are:
— Creating their own RESTful protocols
—Designing their own XML, RDF/XML and JSON representations
—Inventing new patterns for creating and managing resources
— Completing and “converging” 1.0 specs
—Planning and designing 2.0 specs

* Those are mostly good things
—We've learned a lot in the process of developing some solid 1.0 specs
— Good progress on 2.0 thinking around query, resource shapes, links

*Now we need to:
— Ensure consistency and architectural integrity across specs
—Build a core spec that defines our REST protocol and representations
—Enable WGs to focus on data model and domain specific operations

2

Wednesday, February 24, 2010



= \Writing too much boiler-plate REST API spec text

= Have to know too much about RDF/XML, Atom, JSON

—Too much discussion of representation

» Have to design and specify (or cut-and-paste)
—RDF, JSON and other representations
—Query syntax, semantics
— Service documents
—Delegated Ul

» Have to invent new patterns for things like:
—Resource Shapes
—Modeling Links
— Partial Update
—File and File Descriptor
—Hierarchical Web Content
—Resources with huge numbers of properties

3

Wednesday, February 24, 2010



» Stay true to the WWW and REST

—e.g. focus on resources, uniform interface, stable/opaque URIs

»Be as RDF friendly as possible

—e.g. focus on properties, provide RDF representations

» Balance tension between consistency & flexibility
—Want consistency but don’t want to unduly constrain innovation

= Keep it simple
—e.g. minimize new concepts introduced & specifications referenced

* Yet still manage to please everybody
—e.g. schemas for resource creation, XML and JSON representations

4

Wednesday, February 24, 2010



it's turtles all
the way down

= Simple model
—Everything is a resource with property values

» Rules for generating representations

based on that simple model
— RDF/XML required
—Turtle, JSON, Atom allowed

5

Wednesday, February 24, 2010



» Also need three types of resources

Resource
Shape
Resource

links to

Service links to Creation
Resource Resource

links to

Query
Resource

link to
next page

6

links to

Resource

links to other
resources

M may

D)
contain

—)

Wednesday, February 24, 2010



= Overview
= OSLC Resources
» Resource Shape Resources

= Service Resources

= Query Resources

» Creation Resources

» Representations

= Authentication

= OSLC Common Patterns

7

Wednesday, February 24, 2010



» A resource that contains properties values meaningful
to an OSLC Service.

* Normal rules of HTTP should apply:
—Creation - POST (see also Creation Resource)
—Retrieve - GET (see also Query Resource)
—Update - PUT
—Delete - DELETE

8

Wednesday, February 24, 2010



= A resource that describes a Resource Shape, listing the properties
that are expected to be in resources of one specific shape.

= A set of Property definitions each with properties:

— oslc:predicate (URI, Required) - predicate of property

— oslc:datatype (URI, Required, Multi-valued) - datatype of property. May be String,
Integer, Number, Boolean, or URI

— oslc:minOcecurs (integer, optional, default 0) - minimum number of instances allowed

— oslc:maxOcecurs (integer, optional, default is no limit) - maximum number of instances
allowed

— dc:title (String, optional) - title of property

— dc:description (String, optional) - description of property

— oslc:allowedValue (String, optional, multiple allowed) - value allowed for property

— oslc:defaultValue (String, optional) - default value for property

— oslc:maxSize (integer, optional, default is no limit) - maximum length of string
property in characters

— oslc:readOnly (boolean, optional, default is false) - true if property is read-only

= Spec provides set of common property definitions

9

Wednesday, February 24, 2010



= Resource that describes a set of OSLC Resources that
together form an OSLC Service.

= Service can provide one or more:
—Query Resources
— Creation Resources
—Resource Shapes

10

Wednesday, February 24, 2010



=» Resources can be created via normal HTTP POST
—to a creation resource

» Response must include Location of created resource
» Response may include OSLC representation

1

Wednesday, February 24, 2010



» Conceptually a Query Resource is a family of resources
all made available at the same base URI.

» Each resource in the family represents a set of
resources that match a query criteria specified in the
URI by the client.

» Using Query Syntax defined in CM 1.0 spec

12

Wednesday, February 24, 2010



» Things that may not be suitable for cementing into a
specification yet, but we're ready to offer guidance

» Modeling Links

» Partial Update

*File & File Descriptor

= Hierarchical Web Content
» Delegated Ul and Pickers
» Compact Rendering

13

Wednesday, February 24, 2010



» Because we have used a simple conceptual model of
resources with properties, we can define simple rules
for generating representations

* For the sake of inter-op OSLC Services MUST support
RDF/XML representations of all resources

* They MAY support other representations and core spec

will include rules for creating these:

— Turtle
—JSON
—Atom

14

Wednesday, February 24, 2010



» Surface Core Spec draft/straw-man on Wiki

» Quickly merge in ongoing work on:
—Query Syntax
—Resource Shapes

= Review & Discuss Core Spec draft/straw-man
» Use mailing list and WG meetings for discussion
= \Work towards convergence

15

Wednesday, February 24, 2010



