Relationship/Link designs
This document focuses on an external view of the system. It is intended as a guide for how relationships (“links” if you like) should be expressed through OSLC and through any other public interfaces to our systems.

This document assumes two primary interfaces to the system that are externally visible

1) the resources and their representations

2) Query

All of these patterns assume that pointers are stored in one direction only with query used to navigate in the other direction.

The fundamental idea for this is that “links” are always represented as RDF triples. In fact, the word “link” is shorthand for “RDF triple whose object is an URL”. The triples may or may not be reified as statements. Similarly a “link-type” is just another word for RDF predicate, or more precisely “RDF predicate whose range is URL”.

This document describes 4 patterns for storing links. The suggestion is that these are the only acceptable patterns in Jazz applications, although obfuscation by syntax is tolerated, perhaps even encouraged.

Patterns

This document discusses multiple patterns for relationships.

1. Simple In-line relationships

The simplest way to express a relationship is by embedding the URL of one resource in the representation of another. Here is an example:

	Resource URL
	http://acme.com/workitem/1
	http://acme.com /user/1

	Resource representation
	<defect>

<x:owner rdf:resource= "http://acme.com /user/1"/>

</defect>
	<user />

The <owner …> XML element is interpreted as being equivalent in meaning to the following RDF triple, in N3 format, which is the triple that would be put in the query service.
<> x:owner <http://acme.com/user/1>

(for simplicity of the example, the namespace declaration of x has been omitted)

This representation of the owner relationship supports the following simple SPARQL queries:

SELECT ?o WHERE {<http://acme.com/workitem/1> <owner> ?o}

The above query returns the owner of work-item 1.

SELECT ?x WHERE {?x <owner> <http://acme.com/user/1>}
The above query returns all resources owned by user 1.

Note that this design also works for multi-valued relationships, as illustrated in this example.

	Resource URL
	http://acme.com/workitem/1
	http://acme.com /workitem/2
	http://acme.com /workitem/3

	Resource representation
	<defect>

<dependsOn rdf:resource= “http://acme.com /workitem/2”/>

<dependsOn rdf:resource= “http://acme.com /workitem/3”/>

</defect>
	<defect />
	<defect />

This representation of the dependsOn relationship supports the following simple queries:

SELECT ?o WHERE {<http://acme.com/workitem/1> <dependsOn> ?o}

The above query returns the work-items that work-item 1 depends on.

SELECT ?x WHERE {?x <dependsOn> <http://acme.com/workitem/2>}

This query returns all the work-items that are dependent on work-item 2.

Recommendation

Simple in-line representations of relationships/links should be used wherever possible. Designs should only use other options when there are special circumstances, like
1. Security constraints make it impossible to add the properties directly to the representation

2. The representation is in a format (like binary, or a closed format) that makes it impossible to add the information

3. There are pervasive tools that are badly-behaved that operate on these representations and will wipe out the relationship data

4. The relationship is multi-valued, and is modified frequently and concurrently by many users, so putting the information in the resource creates an unacceptable concurrency problem

Some examples of “invalid” reasons for rejecting this design include

1. I like the idea of keeping all my “link properties” separate from the other properties.
2. I took a college class on Kant and I believe there is a difference between extrinsic and intrinsic properties

2. Simple relationships stored separately

Sometimes it is impossible or unacceptable to store the relationship data directly in the subject resource, as discussed above. This pattern shows a way of doing that using the standard rdf:about XML attribute.
	Resource URL
	http://acme.com/workitem/1
	http://acme.com/side/1
	http://acme.com/side/2
	http://acme.com /workitem/2
	http://acme.com /workitem/3

	Resource representation
	<defect/>
	(1)
	(2)
	<defect/>
	<defect/>

Representation (1) looks like this.
<rdf:Description rdf:about="http://acme.com/workitem/1" xmlns:oslc = "www.open-service.net/cm/">

<oslc:dependsOn rdf:resource= "http://acme.com /workitem/2"/>

</rdf:Description>
Representation (2) is identical except that it references http://acme.com /workitem/3.

This example uses RDFXML – it looks much better in N3/Turtle format:

@prefix oslc: www.open-service.net/cm/
@prefix acme: http://acme.com/
acme:workitem/1 oslc:dependsOn acme:workitem/2

There are a couple of things to notice about this:

1) The <dependsOn …../> line is exactly the same as it was in the work-item/1 representation in the “simple relationships” pattern – the line just got moved to a new resource

2) Exactly the same queries that work in the “simple relationships” pattern work for this pattern. The fact that the information moved to a “side resource” did not affect the queries in any way.
3) This design is that it is not in any way specific to links. You can use the same design to store any information about a resource you want in a “side file”.
4) You can also find which resource contains the information using this query:

SELECT ?src ?o

WHERE

{GRAPH ?src

{<http://acme.com/workitem/1> <dependsOn> ?o}

}

5) In many cases, especially for links, it’s helpful to put a single RDF triple in a “side-resource”. This makes it easy to delete the link by simply deleting the resource.

6) There is no special server handling of the POST required – the resource being POSTed is a standard resource with no special semantics

7) Information added with a POST is removed with a normal DELETE. In the case of links, this means that items are added and removed from “collections” using standard POST and DELETE. The collections are not modeled explicitly, but you can query for the collection that contains a set of links.

As with the first pattern, this pattern can be used for multi-valued relationships. In this case, there is a design choice of whether to put multiple “links” in the same resource, or whether to create a separate resource for each link. Putting each link in a separate resource gives a very simple external API for managing the relationship. To create a new link, all you have to do is POST a simple resource. To remove a link, you DELETE the resource. By contrast, if multiple links are in the same resource, the API becomes significantly more complex. You might imagine that creating a lot of separate resources would have significant disadvantages, but since you can easily use query to get the information on all the links at once, there is really no penalty for this design. (See later for an alternative to query for this purpose.)
Recommendation

This is a very useful pattern – use it if you can’t in-line the information in the subject. If using this pattern for the links of multi-valued relationships, do not put more than one RDF triple (link) in a single resource.
3. Relationships stored separately – realized RDF statement version
Sometimes it is important to attach properties to relationships. This can be done without abandoning the rule that links are RDF triples, by realizing the statement as follows:
<statement xmlns=”rdf namespace here”>
<subject rdf:resource= "http://acme.com/workitem/1"/>

<object rdf:resource= "http://acme.com/workitem/2"/>

<predicate rdf:resource= "http://open-services.net/cm/dependsOn">

<y:linkProperty1>xxxx</y:linkProperty1>
</statement>
This syntax will cause 6 different RDF triples to be inserted in the query index, as follows:

< http://acme.com/workitem/1> < http://open-services.net/cm/dependsOn > < http://acme.com /workitem/2>

<> a rdf:statement
<> rdf:subject <http://acme.com /workitem/1>
<> rdf:predicate <http://open-services.net/cm/dependsOn>

<> rdf:object <http://acme.com /workitem/2>

<> y:linkProprty1 "xxxxx"

The first triple allows the standard, simple queries to work:
SELECT ?o WHERE {<http://acme.com/workitem/1> <dependsOn> ?o}

which is the same query as in pattern #1.

The last triple allows the property of the link to be stored. The middle 4 triples are a bit redundant and could possibly be dropped as an optimization. The reason this is possible is that SPARQL will let you find the statement again using queries like this.
SELECT ?stmt ?o

WHERE

{GRAPH ?stmt

{<http://acme.com/workitem/1> <dependsOn> ?o}

}

Recommendation

Use this pattern if you need external links with properties.
4. Inline links with properties

It is not necessary to store links in a separate resource, just because you need properties on them, as illustrated in this example:
<defect>

<oslc:dependsOn id="1" rdf:resource= "http://acme.com /workitem/2" x:probability="0.5"/>

</defect>
This would produce the following triples:

<> oslc:dependsOn <http://acme.com /workitem/2>

<{defect url}#1> x:probability 0.5
<{defect url}#1> a rdf:statement
<{defect url}#1> rdf:subject <>

<{defect url}#1> rdf:predicate oslc:dependsOn

<{defect url}#1> <http://acme.com /workitem/2>

Note that there are many examples in standard formats that fit this model. For example the HTML <a> tag is best thought of as an in-line link with properties.
Recommendation
Use this form for in-line links that need properties.
Helper resources for creating extensions and links
There are a couple of obvious objections to these RDF-based designs:

1) Links stored externally are a bit more complex for programmers to specify because you have to know the RDF syntax for creating the link.
2) You need to know how to use SPARQL query to get all the links for a relationship.

3) The server has to support SPARQL query to let you do it.

I think both of these objections can be overcome by implementing “helper resources”.

In the example above, the helper resources for “http://acme.com /workitem/1” might be

http://acme.com/extensions?http://acme.com/workitem/1

Writing the URL this way, rather than the more obvious

http://acme.com/workitem/1?extensions
allows extensions for resources that are not on the same server. For example, imagine how you would add an extension resource to the resource http://google.com.
These “helper resources” could be located via URL-math, or could be referenced in the representation of http://acme.com/workitem/1, or both. These helper resources are “virtual resources” – they are calculated, not stored (which is the only significance of my choice of using ? rather than / in the URL).
I you do a GET on http://acme.com/extensions?http://acme.com/workitem/1, you will get exactly the same thing as if you executed this query

SELECT ?grp WHERE

{GRAPH ?grp

{<http://acme.com/workitem/1> ?p ?o}
}
(this query would actually return http://acme.com/workitem/1 in addition to the extension resources – we might extend the query to filter that out, or change “extensions” to “locations” to better match the semantic.)

We could choose to adjust the definitions of these queries, for example to return the properties of the extension or link in-line:
SELECT ?grp ?p WHERE

{GRAPH ?grp

{<http://acme.com/workitem/1> ?p}

}

You can also POST to these extension resources. Suppose we had a resource whose url was http://acme.com/signedJar/1. Let’s assume I can’t modify signed jars, but I still need to set the title. I could do something like this.
POST /extensions?http://acme.com/signedJar/1
Host: http://acme.com

<dc:title>Jazz run-time jar</dc:title>

The url of the new resource created by the POST need not have any URL-math relationship to http://acme.com/signedJar/1 - this would be a choice of the implementation.

This will do exactly the same as if I’d POSTed this document to a “root” namespace.
<rdf:Description jazz:about="http://acme.com/signedJar/1">

<dc:title>Jazz run-time jar</dc:title>

</rdf:Description>

One would use a similar pattern to set the value of a relationship on a signed jar.

Although I’ve defined the result of a GET on the extension resource in terms of query, there is no requirement that a server use query to implement these resources. The requirement is that when the product integrates with Jazz Foundation Query, the information returned is the same through both paths.
It would be possible to take this idea even further, supporting URLs like this:

http://acme.com/extensions?url=http://acme.com/workitem/1&predicate= http://purl.org/dc/elements/1.1/
with the expected meanings for GET, PUT, POST and DELETE. This avoids programmers learning any RDF syntax at all – they just need to know how to form the URLs, and POST the undecorated property value. Essentially they have to learn the syntax for composing the URL instead of RDF syntax. This also avoids the need for a server to support SPARQL and the user to understand it. This is especially important for links that specify the value of relationships.
PAGE
4

