OSLC Proposals

1 OSLC Indexing
March 16, 2011

 (Version 0.2)

1.1 Motivation

Many independent tools are used in a Collaborative Lifecycle Management (CLM) system. Each tool manages its own data of some specific type (for example, requirements, test cases, defects, etc.) however, much of each tool’s data refers to data managed by the other tools. The problem faced by developers and managers is how to understand and work with this interrelated data as a whole. For example, what test cases are associated with a specific requirement and which ones are currently passing or failing?

The current solution to this problem involves “extracting” the data from the individual tools, “transforming” it into a corresponding relational database (RDB) model, and then “loading” it all into an RDB, referred to as a “data warehouse”, where it can be queried, analyzed, reported on, etc. This ETL (Extract-Transform-Load) process for building a data warehouse has several drawbacks:

1. The process is time-consuming and therefore typically only done once or twice a day. As a result, the content of the data warehouse is always somewhat stale.

2. The process is complex and difficult to maintain in the face of new types of data or changes to existing data types. Since each tool defines its own way of referring to other data, the ETL process needs to implement a lot of business logic to resolve the various kinds of cross-tool data references.

The Linked Lifecycle Data (LLD) specifications from OSLC provide the foundation for a better solution to this data integration problem. LLD provides a uniform way to identify data, HTTP Uniform Resource Identifiers (URI), and a common representation for it, Resource Description Framework (RDF). With OSLC, each CLM tool assigns a URI and provides an RDF representation for its data and refers to other data using RDF properties that contain the target data URI.

Using LLD, data integration across the multiple CLM tools can be achieved by loading the RDF representations of all the data into a shared triple store, a.k.a., an “index”. The RDF index can then be queried using the SPARQL query language. The value of such a SPARQL query service is that it can answer queries on data across all the tools in a system. However, to be better than the data warehouse approach, the RDF data in the index must be kept current. For example, when running a report 15 minutes before a status meeting, or after adding a new data source (or new properties in an existing data source), the latest data should appear (almost immediately) in new queries.

Implementing such an index-based query and search engine involves several challenges:

1. The RDF indexer must be able to initially load large amounts of RDF data.

2. Updates to data in the individual tools must appear in the index with low latency.

3. Fine-grained access control as defined by the tools must be enforced by the query service.

To achieve these goals, new OSLC services will need to be defined and subsequently implemented by the tools that will participate in the system.
1.2 Indexing Profile
An OSLC service provider that wishes its resources to be available for inclusion in an RDF index MUST provide the following capabilities, collectively referred to as the Indexing Profile capabilities:
1. One or more query capability URIs; the union of the results of OSLC simple queries on these URIs, with no additional query strings required, defines the initial set of resources to be indexed.

2. One change log URI that provides change notification for the set of resources defined by the queries in (1), as well as creation of new resources that would have been included in (1) .
3. Access to security information (ACLs) for every resource exposed by (1) or (2).
The following sections describe each of these capabilities in more detail.

1.2.1 Indexing Query Capabilities
A fundamental requirement of the Indexing Profile is that a service provider expose its set of
 indexable resources. This set of resources can, but may not be, all of the resources owned by the service provider. (FB: Is it worth it to allow a subset? It gives services providers more flexibility to declare some of their resources as “not index-worthy”). This set of resources defines the scope for the other capabilities of the indexing profile (e.g., the resources reported by the change log).
In the simplest case, a service provider can provide exactly one Query Capability (i.e., queryBase URI) which includes all of its contained resources. On the other hand, it may instead provide several Query Capabilities, each exposing only a subset of the indexable resources. This is convenient if different types are most easily returned using custom member properties. (FB: Again, is this worth it, or is it better to simply require one default QueryCapability that returns all the resources in the container?).
The one or more Query Capabilities, of a service provider, that return the indexable resources MUST be designated with an oslc:usage property with a value of
http://open-services/ns/core#index.
1.2.2 Change Log Proposal

A service provider that implements the Indexing Profile MUST provide a “change log” that describes what resources have been created, modified or deleted, and when. If a service provider implements a change log, the change log's URI MUST be included in the service provider description.

Notification of a change to a resource MUST be given if that resource has been deleted, or if a GET on that resource would return a set of RDF triples that is different in number, subjects, predicates,
objects, or reified statements, from the set returned by a previous GET. Notification of a change to a resource MAY be given even if the RDF triple set has not been so altered (perhaps the resource was changed in a way detected by the service provider, but not visible in the RDF representation).

The following single-valued property of the oslc:ServiceProvider resource identifies the location of the change log for the resources managed by the service provider:

 <oslc:changeLog rdf:resource="https://.../ChangeLog" />

An HTTP GET on the changeLog URI returns a list of changes organized in inverse chronological order, most recent first. The following example illustrates the contents of a change log:

@prefix oslc: <http://open-services.net/ns/core#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<https://.../ChangeLog>
 oslc:changes (
 [a oslc:create ;
 oslc:changed <https://.../com.ibm.team.workitem.WorkItem/23> ;
 oslc:at "103"^^xsd:int
]
 [a oslc:update ;
 oslc:changed <https://.../com.ibm.team.workitem.WorkItem/22> ;
 oslc:at "102"^^xsd:int
]
 [a oslc:delete ;
 oslc:changed <https://.../com.ibm.team.workitem.WorkItem/21> ;
 oslc:at "101"^^xsd:int
]) .

As shown, a change log provides a set of change entries in an RDF collection-type property called “oslc:changes”. An RDF collection, i.e., a linked list (see http://www.w3.org/2007/02/turtle/primer/#L2986), is used in the change log to ensure that the entries retain their correct (inverse chronological) order. Each entry in the list identifies a changed resource, a type of change (create, update, or delete), and the relative time of the change. Note that the actual time of change is not included. Only a sequence number, representing the “sequence in time” of each change, is provided.

The oslc:changes property is single-valued and in this case its domain is the ChangeLog resource itself. Typically, however, the change log will be relatively large, requiring resource paging. In this case the “oslc:changes” predicate will be applied to the page URI instead:

@prefix oslc: <http://open-services.net/ns/core#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<https://.../ChangeLog?oslc.paging=true>
 oslc:changes (
 [a oslc:create ;
 oslc:changed <https://.../com.ibm.team.workitem.WorkItem/23> ;
 oslc:at "103"^^xsd:int
]
 [a oslc:update ;
 oslc:changed <https://.../com.ibm.team.workitem.WorkItem/22> ;
 oslc:at "102"^^xsd:int
]
 [a oslc:delete ;
 oslc:changed <https://.../com.ibm.team.workitem.WorkItem/21> ;
 oslc:at "101"^^xsd:int
]) ;
 oslc:nextPage <https://.../ChangeLog?pageno=2> .

As shown, the oslc:nextPage reference, as per the OSLC Paging guidelines, is also used in this case to locate the continuation of the log, if needed. Note that even when paging is not requested by the client, the OSLC service MAY return an HTTP 302 redirect to a paging URI as described in http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;up=#Resource_Paging.

A change log MAY continue all the way back to the time when the first resource was created by one of the associated services and would contain entries for every change made since then. However, to avoid maintaining this ever growing list of changes indefinitely, services MAY truncate the list at a suitable point in time. To minimize the likelihood of clients falling too far behind and then needing a complete resynchronization, it is highly recommended that service providers retain a minimum of seven days worth of changes before truncating the log.

The change log entries in the above examples are represented as inline blank nodes. Although this is likely to be the most common representation, clients MUST also be able to accept references to change entries that are URI-addressable resources themselves. For example:
<https://.../ChangeLog>

 oslc:changes (

 <https://.../changeEvent/103>

 <https://.../changeEvent/102>

 <https://.../changeEvent/101>) .

<https://.../changeEvent/103>

 a oslc:create ;

 oslc:changed <https://.../com.ibm.team.workitem.WorkItem/23> ;

 oslc:at "103"^^xsd:int .

<https://.../changeEvent/102>

 a oslc:update ;

 oslc:changed <https://.../com.ibm.team.workitem.WorkItem/22> ;

 oslc:at "102"^^xsd:int .

<https://.../changeEvent/101>

 a oslc:delete ;

 oslc:changed <https://.../com.ibm.team.workitem.WorkItem/21> ;

 oslc:at "101"^^xsd:int .
1.2.3 Security Proposal

(Note: this section is still under development and not ready for formal review)

Although individual OSLC systems have security models that they implement, in order to allow secure aggregation/indexing of, and query over, LLD resources contained in several service providers, a common OSLC security model/specification is required.

This specification describes how, for a given resource and a given user, an index or query implementation can find out if the user has permission to access the resource (or a specific property thereof), regardless of which OSLC system owns the actual resource. How an indexer actually implements the access control, is beyond the scope of this specification.

There are 3 elements of this proposal:

1. Individual A resource that identifies a person or automated system that can access data from OSLC service providers. Individuals are not tied to a particular OSLC system; they are global to all services providers. The resource URI, for example, http://john-doe, is used to identify the person or system. There are no other required properties on an Individual. URIs of Individuals are included in resource representations as the value of properties like dcterms:creator.

2. Account A resource that is used to authenticate an individual on an OSLC system. Accounts have one single-valued property, “individual”, a reference to the individual that owns the Account. Accounts are local to a particular OSLC system or service provider. They have URIs, but they are never interpreted outside the context of an OSLC server and will never be embedded in resource representations (except maybe special resources that are part of the same OSLC server's administration system). Accounts are often mapped to, or derived from, "user" entries in LDAP servers.

3. ACL (Access Control List) A list of Accounts that are authorized to access a resource or set of resources. The only required property on an ACL is the many-valued Account reference, “authorized”. Another optional property, “visible”, can be used to restrict access to a specific list of properties in the associated resource(s). For example:

<http://example.com/..../acl/1> a oslc:acl;

 oslc:authorized <http://example.com/..../account/1> ;

 oslc:authorized <http://example.com/..../account/2> ;

 oslc:authorized <http://example.com/..../account/3> ;

 oslc:visible (http://example.com/..../prop1 http://example.com/..../prop2) .

This indicates that only two properties are visible to the authorized accounts. By default, all available properties will be visible.

ACLs do not point to the resources that they apply to, which significantly simplifies their maintenance.

The final thing needed to implement a security system using these elements is a way to get the ACL for a particular resource. A new OSLC property, oslc:acl, is used for this purpose. Every resource exposed through the Indexing Profile MUST include an oslc:acl property, from which GET will return the resource’s corresponding ACL.
The following diagram illustrates how Individuals, Accounts, and ACLs would be used:

[image: image1]
In this diagram there are two service providers, Service Provider A and Service Provider B, two individuals, http://john-doe and http://jane-smith, and an indexer which aggregates the resources from both service providers. As shown, individual http://john-doe has access to resource RA1 from Service Provider A and resource RB1 from Service Provider B. Individual http://jane-smith has access to resource RA3 from Service Provider A and resources RB2 and RB3 from Service Provider B. Both individuals have access to resource RA2.

For each aggregated resource, the indexer would traverse the reference to its associated ACL and subsequently access the account(s). From the account, the individuals with access rights to the resource can be determined, allowing the indexer to honor the security rights of the underlying service providers.

In this example, Service Provider A is presumed to be an OSLC system which maintains its own security model. As a result, it has its own accounts (indicated by their locations within the dashed lines of Service Provider A). Service Provider B and the indexer, on the other hand, are presumed to be running on the same server and using central account management on that server, and therefore can share the same account resources.

When the accounts are different, as for Service Provider A, the aggregator has the additional problem of “correlating” different accounts managed by different servers. Although the accounts are different, they refer to the same individuals. This is the service providers responsibility. However, even though two accounts claim to represent the same individual (e.g. http://john-doe), they may be lying. Therefore, the aggregator would use OAuth to force individuals to log on at the source server for each account that claims to be for them. In other words, individuals will have aggregated access to all their data, but only if they can log on to all of the associated accounts.

Things are simplified if the service providers are all using central account management; the individual will only need to log on to one account. However, if the indexer is aggregating across multiple OSLC systems, logging onto multiple accounts will still be necessary.

TODO: mention that ACL resources need to be included in the Change Log.
User: Jane

 Smith

User:

John Doe

Service Provider A

Resource

RA1

RA2

RA3

ACL

AA1

AA2

AA3

Account

jdoe

jsmith

Individual

http://john-doe

http://jane-smith

Service Provider B

Resource

RB1

RB2

RB3

ACL

AB1

AB2

AB3

Account

John Doe

Jane Smith

Indexer/Aggregator

RA1

RB1

RA3

RB2

RB3

RA2

�What makes a resource indexable? I assume it means that it can be queried and is available through a query capability, but this definition is unclear

�Nit: might be better to be more descriptive: �http://open-services.net/ns/core#IndexUsage and to avoid NS clash. Or use a different namespace altogether.

�This first sentence is hard to understand “notification of change” … “has been deleted”. Seems like it would be better to be a bulleted lists of items that MUST generate a “ChangeLog” entry. I wouldn't call it a “notification of a change”

�Even literal values changed?

Page 8

