Open Services for Lifecycle Collaboration

open community. open interfaces. open possibilities.

L -

Eclipse Lyo Overview
http://eclipse.org/lyo

Michael Fiedler, Eclipse Lyo committer

\ Eclipse Lyo

Enabling tool integration with OSLC

Agenda

Eclipse Lyo background

Content and Plans

Test Suites
OSLC4J
Samples

Next Steps

OSLC Core spec defines
HOW to use HTTP and RDF, how to define resources and services

Defines some common resource types and properties

OSLC domain specs (Change Management, Requirements, etc.)
Define WHAT resources and services required in the domain

Resource types, properties and relationships
Service providers, creation factories, query capabilities, operations

But, what do | do with an OSLC spec? How do | use it for real integrations?
Commercial tools available with OSLC APlIs
Many organizations developing OSLC integrations in-house
Educational and research institutions developing tool integrations based on OSLC

Would be good to have open source sample code, SDKs, tests, etc to help get
started.

© 2012 IBM Corporation

Home Downloads Users

Members Committers

Eclipse Lyo

Enabling tool integration with OSLC

Resources

Projects About Us

d

| Search |

Custom Search

The Eclipse Lyo project focuses on providing an SDK to help the Eclipse community to adopt OSLC (Open
Services for Lifecycle Collaboration) specifications and build OSLC-compliant tools.

Check out the original proposal.

What is OSLC?

An open community

We are an open, industry-wide
community that is dedicated to
reducing the barriers between lifecycle
tools.

We want to help others build software
that easily integrates with other
software, which will let you build your
ideal development environment,
minimize frustration, and save time and
money.

Lyo features

SDK

We’'ll provide the pieces to get your
client or server up and running with
OSLC. We're focusing on Java initially;
however, JavaScript and other
languages will soon follow.

Writing open specifications
We write specifications that are...

= Flexible: Our specifications allow
any OSLC-compliant tool to easily
use the data of any other
OSLC-compliant tool

= Free to adopt: All of our
specifications are free to use.

= Based on open data standards:
Our specifications use REST
interfaces and URLs to expose
lifecycle data

Test suite
Utilize a test suite to help build
interoperable OSLC tools.

For many types of software

OSLC's scope started with Application
Lifecycle Management (ALM) and is
expanding to include integrations across
Product Lifecycle Management (PLM) and
IT Service Management (ISM/DevOps)

As OSLC expands, we want to help the
Eclipse community to build
OSLC-compliant software.

Reference implementations

See how OSLC works directly with working
samples and with a simple server to test
against.

CEE. U Y JS—

Project status

We are making the initial contributions for
the project. View the detailed project
summary here.

Additional project details on plan
development can be found on the project
wiki as well.

Source code now available in Git repo!

2 3

incubation

Keep In touch!
Join the lyo-dev mailing list.

You can also follow us on Twitter.

See also

1 Learn more about OSLC

1 Get involved with the OSLC community

© 2012 IBM Corporation

Evolution of OSLC tool repositories on SourceForge and some private to OSLC community participants
Project approved by Eclipse PMC in July 2011 with the goal of providing an SDK to enable adoption of
OSLC specifications, including

Code libraries

Reference implementations of specifications

Test suites and test reporting

Samples, tutorials and documentation

NOT a plugin for the Eclipse IDE, NOT related to OSGI — although Lyo artifacts could be used in Eclipse plugins.

Eclipse chosen as the home for the project for its mature governance model and IP policies.

Eclipse community includes tool vendors and tool interop projects. Other participants in the OSLC
community are also active in Eclipse projects related to OSLC.

Tasktop (Mylyn)

Oracle (Hudson)

Institut Telecom

Project content is dual-licensed under the Eclipse Public License and the Eclipse Distribution License

© 2012 IBM Corporation

Agenda

Eclipse Lyo background

Content and Plans

Test Suites
OSLC4J
Samples

Next Steps

Initial code contributions live in September 2011

Reference Implementations for OSLC (RIOs) for the Change, Requirement and Architecture
Management specifications.

Provides samples of implementations

Enable prototyping and experimentation during spec development
Possible starting point for integration adapters or new service providers
Co-developed with the OSLC test suite to improve both

OSLC Test Suite and Reports
Measure implementation compliance against Core and domain specifications
Improve implementation quality by finding bugs
Currently covers core and CM. Other domains will follow
Initial focus is on MUST items, followed by SHOULD and MAY
Reports provide both summary and detailed results

Samples
Change Management adapter for Bugzilla
Change Management adapter for Microsoft Excel

© 2012 IBM Corporation

Code libraries
OSLC4J SDK for Java with example implementations
Other technologies (.NET, PHP, JavaScript, Python, Perl)
Code contributions welcome

Test Suites
Increase domain coverage
Increase specification coverage within domains
Move the tests towards a true compliance suite

Samples
OAuth consumer and provider samples
Sample integrations with Microsoft products
Sample integrations with Rational Jazz products
OSLC Workshop/Tutorial code

© 2012 IBM Corporation

See project plans at: http://wiki.eclipse.org/Lyo/ProjectPlans

M1/M2 Milestones
M1 (4Q2011)
Focus was on test suite enhancements
90% MUST coverage for Core and Change Management
Test suite reporting
Many bug fixes and enhancements
M2 (1Q2012)
OSLC4J SDK for Java — initial contribution of source
Example implementations based on OSLC4J
Start release engineering work to build consumable jars
Continue test suite work
Additional domains (QM)
Improvements to core tests

What's not there yet
As of today, need to build the OSLC4J SDK and test suite from source
OSLC4J consumable JARs are close — working on publishing to Eclipse’s Maven repo.
Getting started: http://wiki.eclipse.org/Lyo

© 2012 IBM Corporation

10

Eclipse Lyo background
Content and Plans

Test Suites

OSLC4J

Samples

Next Steps

11

OSLC Core and Domain coverage
Initial focus on Core and CM testable MUSTs

QM coverage underway
Code contributions welcome

Test suite as an OSLC consumer
Example of how to interact with an OSLC provider
Does not yet include OAuth interactions
Patterns for GET/POST/PUT
Patterns for validating and handling RDF using Jena

Getting started with the tests and reports: http://wiki.eclipse.org/Lyo/Build TestSuite

© 2012 IBM Corporation

OSLC Test Suite

As an OSLC Compliance Assessor

OSLC TestSuite Execution Summary

8
g OO [Frorererree e e
G 75 e
§. 50 e B B ...
€ 25 el
e 0
Attempted Passed Failed Error
(MUSTS) (MUSTS) (MUSTS) (MUSTS)
| ostc-cm 20 61 61 0 0

B Attempted = Pass + Fail + Error. # of Tests Executed for a Specification Type
O Pass: # of Test(s) achieving the respective test design's expected result
@ Fail: # of Test(s) deviating from the respective test design's expected result.

@ Error: # of Inconclusive Results. Test executions encountering error due to poor test design,
faulty environment or invalid configuration. Test results could not be assessed.

OSLC compliance ‘

Thu Nov OSLC- 2.0 JIRA Level 1 54.2% (58/107) 87.9% (51/58)

17 CM Compliance [58 of the 107 OSLC-CM 51 of the 58 testable MUST
00:04:44 2.0 MUST requirements requirements currently
EST 2011 are currently testable have JUnit test case

via the Lyo OSLC coverage within the Lyo
testsuite. OSLC testsuite

: One or more attempted tests covering a MUST requirement has encountered a failure or error
Level 1 Com Ilanoe All Attempted Tests co'vering equirement are Passing and free of failure or error
m All Attempted Tests covering a MUST and SHOULD requirement are Passing and free of failure or error
p All Attempted Tests covering a MUST, SHOULD and MAY requirement are Passing and free of failure or error
Note: This testsuite will continue to evolve and expand. Requirements may have one or more associated test(s) for coverage to address positive and negative input behaviors.

12

© 2012 IBM Corporation

OSLC Test Suite ‘
As an OSLC Adoption Accelerator

* Provide Documentation ?@9%'
* Provide Troubleshooting Tips
* Provide Test Strategy Guidance Home Dowrloads Users Members Commiters Resources Projcts About Us
. Help Setup/Configure Navigation [Page | [oiscussion | [viewsource | [THisory | [ean |
« Help to learn OSLC specs o s Lyo/Build TestSuite

- In-line Code Comments © Cumentevens <1

- OSLC spec and test mapping R Contents]

Help 1 Building and running the Lyo OSLC Test Suite

1.1 Prerequisites

Toolbox 1.2 Clone the Lyo OSLC Test Suite git repository
1.3 Import Eclipse projects from the git repository
1.4 Configure the OSLC Test Suites

Expected 406 but received HTTP/1.1 200 OK,Content-type='invalid/content-type' but received text/xml;charset=UTF-8

junit. AssertionFailedr: : Expected 406 but received HTTP/1.1 200 OK,C pe=" invalid, ype' but ived text/xml; TE-5

2t org.eclipse.lyo. ite.server.osl .ServiceProviderXmlTests . invali ypebi ppoxted0PTIONAL(SexviceProviderXmlTests . java: 115) 1.5 Running the OSLC Test Suite
2t org.eclipse.ant.internal.launching.remote .EclipseDefaultExecutor . EclipseDefaultExecutor . java:32)

at org.eclipse.ant.internal.launching.remote . InternalAntRunner .xun(InternalAntRunner . java :424)

at org.eclipse.ant.internal. launch

.xemote . Intern: .main(Interna .java:138)

Building and running the Lyo OSLC Test Suite

%X Root Cause: Response Code 406 Failures of this type occur when ...

2= Reaction Plan:

Prerequisites
¢ Create Response Code 406...
« Adjust Response Code 406... Eclinse 3.6 or3.7 IDE @
« Verify Response Code 406... : : : . b ! : .
« Investigate Response Code 406... EntityUtils. consume(resp.getEntity(3); rammandad) ar nit rcnmmand line narkana &

// all subjects whose rdf:type = oslc:ServiceProvider

Property rdfType = spModel.createProperty(0SLCConstants.RDF_TYPE_PROP);
Resource spTypeRes = spModel.getResource(0SLCConstants.SERVICE_PROVIDER_TYPE);
Selector select = new SimpleSelector(null, rdfType, spTypeRes);

~1r

<testclass package="org.eclipse.lyo.testsuite.server.oslcv2tests" name="ChangeRequestRdfXmlTests">
<testcase level="MUST">changeRequestHasOneTitle</testcase>
<testcase level="MUST">changeRequestHasAtMostOneDescription</testcase>

<testclass package="org.eclipse.lyo.testsuite.server.oslcv2tests" name="CreationAndUpdateRdfXmlTests">
<testcase level="SHOULD'">createValidResourceUsingRdfXmlTemplate</testcase>

=
<testcase level="SHOULD'">createResourceWithInvalidContent</testcase>

13

© 2012 IBM Corporation

14

Eclipse Lyo background
Content and Plans

Test Suites

OSLC4J

Samples

Next Steps

Getting started: http://wiki.eclipse.org/Lyo/BuildingOSLC4J

Java SDK for OSLC provider and consumer implementations
Based on OSLC related Java annotations and JAX-RS for REST services
Includes a Change Management reference implementation and other samples
Modular structure avoids forcing dependence on specific technologies.
Jena and Apache Wink provide RDF, JSON and JAX-RS capabilities out the box
Implementers can choose to use OSLC4J with other “providers” such as OpenRDF and Jersey

What OSLC4J and JAX-RS handle for you
Resource shapes and service provider documents
Marshaling of Java objects to RDF (XML or JSON)
Un-marshaling of RDF (XML or JSON) to Java objects
Mapping REST service calls (GET, POST, PUT, DELETE) to Java methods

What OSLC4J and JAX-RS do not handle for you
Persistence of your OSLC resources
Business logic for mapping Java objects to native resources
Automatic support for OSLC query syntax (working on some helpers)

15

© 2012 IBM Corporation

¥

Implementing providers with OSLC4J — JAX-RS Application

= Some basics
» Set up an OslcWink application (extends JAX-RS Application class)

public final class 0Oslc4]ChangeManagementApplication
extends OslcWinkApplication|

{
private static final Set<(Class<?>> RESOURCE_CLASSES = new HashSet<(Class<?>>();
private static final Map<String, Class<?>> RESOURCE_SHAPE_PATH_TO_RESOURCE_CLASS_MAP = new HashMap<String, Class<?>>();
static
{
RESOURCE_CLASSES.addAl1(JenaProvidersRegistry.getProviders());
RESOURCE_CLASSES.addA11(Json4]ProvidersRegistry.getProviders());
RESOURCE_CLASSES.add(ChangeRequestResource.class);
RESOURCE_SHAPE_PATH_TO_RESOURCE_CLASS_MAP.put(Constants.PATH_CHANGE_REQUEST, ChangeRequest.class);
}
public O0slc4]ChangeManagementApplication()
throws OslcCoreApplicationException,
URISyntaxException
{
super(RESOURCE_CLASSES,
OslcConstants.PATH_RESOURCE_SHAPES,
RESOURCE_SHAPE_PATH_TO_RESOURCE_CLASS_MAP);
}
}

16

© 2012 IBM Corporation

Implementing providers with OSLC4J - Namespaces

@0sl

D
pack:

impo

impo
impo

17

= Some basics
» Tell OSLC4J what namespaces you are going to use

cSchema ({

@0slcNamespaceDefinition(prefix = OslcConstants.DCTERMS_NAMESPACE_PREFIX, namespaceURI = OslcConstants.DCTERMS_NAMESPACE),
@0slcNamespaceDefinition(prefix = OslcConstants.0SLC_CORE_NAMESPACE_PREFIX, namespacelRI = OslcConstants.0SLC_CORE_NAMESPACE),
@0slcNamespaceDefinition(prefix = OslcConstants.O0SLC_DATA_NAMESPACE_PREFIX, namespaceURI = OslcConstants.OSLC_DATA_NAMESPACE),
@0slcNamespaceDefinition(prefix = OslcConstants.RDF_NAMESPACE_PREFIX, namespaceURI = OslcConstants.RDF_NAMESPACE),
@0slcNamespaceDefinition(prefix = OslcConstants.ROFS_NAMESPACE_PREFIX, namespaceURI = OslcConstants.RDFS_NAMESPACE),
@0slcNamespaceDefinition(prefix = Constants.CHANGE_MANAGEMENT_NAMESPACE_PREFIX, namespaceURI = Constants.CHANGE_MANAGEMENT_NAMESPACE),
@0slcNamespaceDefinition(prefix = Constants.FOAF_NAMESPACE_PREFIX, namespaceURI = Constants. FOAF_NAMESPACE),
@0slcNamespaceDefinition(prefix = Constants.QUALITY_MANAGEMENT_PREFIX, namespaceURI = Constants.QUALITY_MANAGEMENT_NAMESPACE),
@0slcNamespaceDefinition(prefix = Constants.REQUIREMENTS_MANAGEMENT_PREFIX, namespaceURI = Constants.REQUIREMENTS_MANAGEMENT_NAMESPACE),

@0slcNamespaceDefinition(prefix = Constants.SOFTWARE_CONFIGURATION_MANAGEMENT_PREFIX, namespaceURI = Constants.SOFTHWARE_CONFIGURATION_MANAGEMENT_NAMESPACE)
age org.eclipse.lyo.oslc4j.changemanagement;
rt org.eclipse.lyo.oslc4j.core.annotation.0slcNamespaceDefinition;

rt org.eclipse.lyo.oslc4j.core.annotation.0slcSchema;
rt org.eclipse.lyo.oslc4j.core.model.OslcConstants;

© 2012 IBM Corporation

)

-

Implementing providers with OSLC4J — Annotating Resources

= Model OSLC resources with Plain Old Java Objects

» Tell OSLC4J which class maps to an OSLC resource type (e.g. ChangeRequest)

@0slcNamespace(Constants. CHANGE_MANAGEMENT_NAMESPACE)
@0slcResourceShape(title = "Change Request Resource Shape", describes = Constants. TYPE_CHANGE_REQUEST)
public final class ChangeRequest
extends AbstractResource

{

private Boolean approved;

private Boolean closed;

private Date closeDate;

private Date created;

private String description;

» OSLC Java notations to decorate POJOs

= Decorate the getters for resource attributes with resource shape information (OSLC
name, description, range, cardinality, read/write ability).

@0slcDescription("A unique identifier for a resource. Assigned by the service provider when a resource 1i
@0s1cOccurs(Occurs. ExactlyOne)

@0slcPropertyDefinition(0slcConstants. DCTERMS_NAMESPACE + "identifier")

@0s1lcReadOnly

@0slcTitle("Identifier")

public String getldentifier()

{
}

return identifier;

18

© 2012 IBM Corporation

19

Implementing providers with OSLC4J — Annotating Services

= Decorate Java methods with OSLC and JAX-RS annotations
» HTTP GET for all ChangeRequests — supports RDF XML, XML and JSON

@GET

@Produces({0slcMediaType. APPLICATION_RDF_XML, OslcMediaType.APPLICATION_XML, OslcMediaType.APPLICATION_JSON})

public ChangeRequest[] getChangeRequests(@QueryParam("oslc.where") final String where)
{

final List<ChangeRequest> results = new ArraylList<ChangeRequest>();
//Business logic for retrieving change requests would replace the following Iind
final ChangeRequest[] changeRequests = Persistence.getChangeRequests();

for (final ChangeRequest changeRequest : changeRequests)
{

changeRequest.setServiceProvider(ServiceProviderSingleton.getServiceProviderURI());
results.add(changeRequest);

}

return results.toArray(new ChangeRequest[results.size()]);

© 2012 IBM Corporation

20

Implementing providers with OSLC4J

= Decorate Java methods with OSLC and JAX-RS
» HTTP POST to create new ChangeRequest

@0slcCreationFactory

(
title = "Change Request Creation Factory",
label = "Change Request Creation",
resourceShapes = {0slcConstants.PATH_RESOURCE_SHAPES + "/" 4+ Constants.PATH_CHANGE_REQUEST},
resourceTypes = {Constants. TYPE_CHANGE_REQUEST},
usages = {0slcConstants.OSLC_USAGE_DEFAULT}
D)
@POoST

@Consumes({0slcMediaType. APPLICATION_RDF_XML, OslcMediaType.APPLICATION_XML, OslcMediaType.APPLICATION_JSON})
@Produces({0slcMediaType.APPLICATION_RDF_XML, OslcMediaType.APPLICATION_XML, OslcMediaType.APPLICATION_JSON})
public Response addChangeRequest(@Context final HttpServletRequest httpServlietRequest,

@Context final HttpServletResponse httpServletResponse,

final ChangeRequest changeRequest)
throws URISyntaxException
{
//Business logic for creating a new change request goes here
return Response.created(agbout).entity(changeRequest).build();
}

© 2012 IBM Corporation

OSLC consumers using OSLC4J
= OSLC REST Client based on Apache Wink

21

» Included in the OSLC4JWink project

» Methods to Get/Create/Update/Delete OSLC Resources

» Handles Java/RDF marshaling

» Requires same POJO resource definitions used by the service provider

» See the OSLC4J Junit Tests for examples of using the client

protected void testRetrieve(final String mediaType)
throws URISyntaxException
{

assertNotNul L(CREATED_CHANGE_REQUEST_URI);

final OslcRestClient oslcRestClient = new OslcRestClient(PROVIDERS,
CREATED_CHANGE_REQUEST_URI,
mediaType);

final ChangeRequest changeRequest = oslcRest(Client.getOslcResource(ChangeRequest.class);

verifyChangeRequest(mediaType,

changeRequest,
true);

© 2012 IBM Corporation

22

Eclipse Lyo background
Content and Plans

Test Suites

OSLC4J

Samples

Next Steps

Change Management provider
Working on delegated Ul, but provider available

Stock Quote provider
example of OSLC app not based on a current domain specification
Uses OSLC core techniques to define a new resource type (StockQuote)

OSLC4J Registry application
Implementation of a standalone OSLC catalog registry server

REST API to allow service providers to register/de-register themselves
Used by the OSLC4J CM and StockQuote samples

23

© 2012 IBM Corporation

24

Bugzilla Adapter
Full CM service provider adapter for Bugzilla
Includes OAuth and Rational Jazz rootservices support
Good example for connecting to Rational Jazz OSLC providers

OAuth sample web app
Sample code for handling OAuth tokens and authentication

Reference implementations for OSLC (RIOs)
Example OSLC providers built using OpenRDF and a traditional servlet approach
Change, Architecture and Requirement Managemt providers
Include simple delegated Uls
Includes OSLC query support (oslc.where)

Microsoft Excel change management adapter

Example of exposing rows of an Microsoft Excel sheet as change requests
Map columns to OSLC attributes

© 2012 IBM Corporation

25

Eclipse Lyo background
Content and Plans

Test Suites

OSLC4J

Samples

Next Steps

26

Participating in Lyo

Home Downloads

v Vv

v v v

Users Members Committers Resources Projects About Us

Navigation

Main Page
Community portal
Current events
Recent changes
Random page

Help

Toolbox

What links here
Related changes
Upload file
Special pages

Printable version

Participating in Lyo

Page Discussion View source History Edit
Lyo/ProjectPlans
<Lyo

Contents [hide]

1 Introduction
2 Lyo Components
2.1 OSLC Java SDKs
2.2 Test suite for OSLC
2.3 Reference implementations for OSLC (RIOs)
2.4 Additional Proposed SDKs
3 Milestones

Lyo is currently source only — goal to have builds of consumabile jars starting in February

Visit http://wiki.eclipse.org/Lyo to get more info, see milestone plans, etc
Open Bugzilla requests at: https://bugs.eclipse.org/bugs/enter bug.cgi?product=Lyo
Subscribe to the lyo-dev@eclipse.org mailing list and introduce yourself.

Looking for developers interested in promoting OSLC adoption by developing SDKs, reference
implementations, compliance tests and examples

© 2012 IBM Corporation

Resources

OSLC Web Site
» http://open-services.net

OSLC Primer
» http://open-services.net/primer

OSLC Tutorial
» http://open-services.net tutorial

Open source - Eclipse Lyo Project
» http://eclipse.org/lyo
» http://wiki.eclipse.org/Lyo

27

© 2012 IBM Corporation

Questions?

» Questions?

28

© 2012 IBM Corporation

29

OSLC4J project mapping - repo is git://git.eclipse.org/gitroot/lyo/org.eclipse.lyo.core.git
OSLC4J — Core project
OSLC4JJenaProvider — RDF and RDF/XML provider based on Jena
OSLC4JJSON4JProvider — Apache Wink JSON4J provider
OSLC4JWink — Apache Wink JAX-RS provider + OSLC client
OSLC4JRegistry — Sample catalog registry application.
OSLC4JTest — Test provider
OSLCA4JTestTest — Junit Tests for Test provider
OSLC4JStockQuote — Stock Quote provider
OSLC4JStockQuoteCommon — Stock Quote common classes
OSLC4JStockQuoteTest — Junit Tests for StockQuote provider

OSLC4JCoreRelEng- release engineering files (master pom.xml for Maven)

OSLC4J Change Mgmt sample — repo is : git://git.eclipse.org/gitroot/lyo/org.eclipse.lyo.rio.git
OSLC4JChangeManagement — CM provider
OSLC4JChangeManagementCommon — CM common classes
OSLC4JChangeManagementTest — Junit tests for CM provider

© 2012 IBM Corporation

